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ABSTRACT 

When a laser beam with an otherwise planar optical wavefront, is made to propagate 
through a turbulent, variable-index flow field, the beam's wavefront is imprinted with a time- 
varying aberrations over its aperture (beam diameter). These dynamic aberrations degrade the 
ability for the beam to be focused in the far field. In the case of a laser propagated from an airborne 
platform, the far field could be anywhere from kilometers to hundreds of kilometers away. The 
effectiveness of an airborne laser system depends on the beam-control system being able to hold a 
spot on the far-field aim point, which exceeds a minimum intensity. The beam's intensity in the far 
field is directly dependent on how well it can be focused. In general, there are two distinct regimes 
of variant-index flows that contribute to the focus-ability: the first is the beam's path from just 
outside the flowfield surrounding the aircraft, through the intervening atmosphere, to the far field; 
and the second is the flow traversed by the beam within the immediate vicinity of the aircraft. The 
first regime is referred to as "atmospheric propagation." This grant effort specifically addressed the 
second regime, the optical-propagation problem in the immediate vicinity of an airborne platform; 
this regime of the optical-propagation problem is referred to as "aero-optics." AFOSR-funded 
research at Notre Dame has shown that, although propagation through attached turbulent boundary 
layers can reduce the average on-axis intensity in the far field by 5 - 30%, this reduction in 
intensity pales in comparison to propagation through a separated shear layer, which can reduce the 
intensity in the far field by more than 95%. Adaptive optic systems have been used for decades to 
correct for the aberrations on a beam due to propagation through the atmosphere. These systems, in 
their conventional architecture, first sense the wavefront aberration that will be imposed on the laser 
beam propagating through the aberrating field, construct a conjugate waveform to correct for the 
aberrations, and finally deform a mirror onto which the laser is reflected prior to projection through 
the aberrating flow. Because the frequencies associated with aero-optical flows are orders of 
magnitude greater than state-of-the-art, conventional adaptive optic systems, it had been believed 
that adaptive-optic correction for aero-optic effects could not be done. 

The results of the research reported here begin with a successful demonstration of a feed- 
forward approach to correcting the beam. The approach incorporated flow control to regularize a 
Mach 0.78 compressible shear layer and used a man-in-the-loop approach to phase up and adjust 
the amplitude of a traveling waveform being fed forward to Notre Dame's deformable mirror. The 
experiments demonstrated that the intensity on target in the far field could be increased from 14% 
of the diffraction-limited intensity uncorrected to 70% of the diffraction-limited intensity after 
correction. An additional result reported here dealt with the development of an automated 
controller to replace the man in the loop. Finally, a large part of this report describes results from a 
theoretical analysis of the effect that apertures play as spatial filters on the aero-optically-imposed 
aberrations. This section is fairly complete, as it provides guidelines for many of the parameters 
needed to design adaptive optic systems. It also provides a rational basis for many anomalous 
findings in the general field of beam control. It is our hope that this report, particularly this last 
section will be widely circulated to the laser community in the DoD. 
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/. INTRODUCTION 

When a collimated laser beam of wavelength ~ 1 urn propagates through a separated 
shear layer with a convective Mach number as low as 0.15 (high speed side at M = 0.3) 
the beam's wavefront is aberrated to the point that its focused intensity can be reduced by 
more than 50% of its diffraction-limited intensity. The study of the aberrating effect of 
shear flows is referred to as Aero-Optics.[\] Notre Dame has been studying aero-optics 
since 1993 (F49620-93-0163, F49620-97-1-0489, F49620-00-1-0025 and F49620-03-1- 
0019) and has made many breakthroughs. The Notre Dame efforts have moved the 
understanding of aero-optics from a statistically-based, time-averaged, optical-path- 
difference (OPD) approach, based on statistical, fluid-mechanical measurements, to a 
formal, cause-and-effect understanding of optical propagation through boundary and 
shear layers.[1,2,3] The work reported here made use of the results of these previous 
grants, in particular the knowledge of the aberrating physics, various high-bandwidth 
wavefront-sensing instruments developed at Notre Dame, techniques developed using 
other commercially-available instruments, and our high-bandwidth deformable mirror, 
acquired under a DURIP grant as part of our high-bandwidth adaptive optics system to 
demonstrate the historic adaptive-optic correction of a laser beam projected through a 
Mach 0.8 shear layer. This demonstration took place at the very beginning of the present 
grant. 

Objectives. The objectives of this grant were to make use of forcing to "regularize" a 
high subsonic-Mach-number shear layer, developed in the last grant, and to make use of 
the characterization of the concomitant optical environment on a large-aperture laser 
beam propagated through the regularized shear layer to perform the feed-forward 
adaptive-optic demonstration referred to above. In parallel with this demonstration that 
involved a man in the loop, the second primary objective was to develop an automated 
control system to remove the need for a man in the loop. Additionally, as has been our 
practice in all our AFOSR grants, where interesting lines of inquiry present themselves 
we attempt to pursue them; in the present grant this took the form of studying the spatial- 
filter characteristics of the aperture placed on the laser beam prior to propagating it 
through the shear layer. As this aperture effect is critical to any control system, it fell 
within the general context of the present grant. 

Approach. The approaches to achieving the grant objectives were to perform a man-in- 
the-loop demonstration of a feed-forward correction of a relatively large-aperture laser 
beam aberrated by being propagated through a regularized compressible shear layer. 
Next, the optical characterization of the regularized shear layer and its velocity field were 
used to validate the use of a low-order CFD model. Having a sufficiently-faithful CFD 
model, the characteristics of laser beams numerically propagated through the computed 
shear layer were used to model control-system architectures for feeding forward to a 
deformable mirror the conjugate waveforms needed to correct the laser beam. Finally, 
making use of a successful architecture, hardware was developed that can be used to 
replace the man in the loop in the shear layer experiments using Notre Dame's feed- 
forward adaptive-optic mitigation approach for regularized aberrating flows. 



//. BACKGROUND 

Aero-Optics. The projection of a collimated laser beam, of "viewing aperture" Ap, through 
a turbulent flowfield with index-of-refraction variations, leads to a time-varying aberration 
of its otherwise-planar, optical wavefront. These aberrations lead to a reduction in 
performance of an optical system making use of the optical "information" contained over 
the viewing aperture. Systems concerned with such reduction in performance include, but 
are not limited to, airborne laser irradiating systems. 

A system's performance reduction (induced by turbulent, variant-index flowfields) 
can be quantified by analysis of the far-field irradiance pattern. [5] The irradiance pattern 
is the instantaneous intensity pattern at the target, I(x,y,t), where (0,0) would indicate the 
center of the aim point. The extent to which the on-axis intensity is reduced as a function 
of time, 1(0,0,0, when divided by the highest possible on-axis intensity without aberrations 
(referred to as the diffraction-limited intensity), I0, is expressed as the Strehl ratio, SR, 

The reduction in Strehl ratio due to time-varying, aberrating flowfields can occur over short 
path lengths in the near field (i.e., path length, z, on the order of Ap), or it can occur over 
extended paths (i.e., path lengths, z, much larger than Ap). The former, short-path (near- 
field) aberration is usually termed aero-optics and the latter, long-path aberrations are 
usually termed atmospheric propagation. These classifications have their origin in the 
specific applications with which they are associated [see Refs. 6 and 7, for example]. It has 
long been known that placing a conjugate waveform on the beam prior to its transmission 
through the aberrating medium results in the emergence of a planar-wavefront beam as it 
leaves the medium; systems that sense the aberration, construct and apply the proper 
conjugate waveform at regular time intervals are termed adaptive-optic systems, and the 
study of such systems is known as adaptive optics. [8] The determination of the design 
requirements for such systems depends on understanding the spatial and temporal 
frequencies of the distorted optical wavefront for the applicable aberrating flowfields. 

Over the last two decades progress has been made in both measuring the wavefront 
dynamics for the atmospheric propagation problem and using this information for 
designing and applying adaptive-optic equipment and techniques. [9] For aero-optic 
problems, on the other hand, until Notre Dame's successful demonstrations reported here, 
no adaptive optic correction for the aero-optic problem was ever demonstrated. The 
reason for the inability to correct for aero-optic aberrations prior to work reported here is 
that the required spatial and temporal frequencies associated with aero-optic problems arc 
at least an order of magnitude greater than those correctable by the conventional approach 
to designing adaptive-optic systems, even for relatively-slow laboratory flows. [10] As 
such, the main research thrust in aero-optics until the early to mid 1990's had been to 
attempt to quantify the time-averaged phase variance (or root-mean-square Optical Path 
Difference, OPDms, which is related to the phase variance through the wave number). 
Once obtained by whatever means, the phase variance was used to compute an estimate of 
the system degradation imposed by the near-field aberrations using the large-aperture 
approximation. [1] These statistical methods gave no information useful to the design of 
adaptive-optic systems required to correct aero-optic aberrations. Research at Notre Dame 



supported by AFOSR has focused exclusively on the aero-optics problem, with an 
emphasis on understanding how adaptive optics can be applied to the problem. As will be 
described later in this report, Notre Dame has introduced flow control into the adaptive- 
optic paradigm and developed a feed-forward approach that has now demonstrated a 
historic first, the adaptive-optic correction of a laser propagated through an otherwise 
devastating Mach 0.8 free shear layer. 

Characteristics of Aero-Optic Aberrations. During a previous AFOSR grant, Notre 
Dame used a wavefront sensor developed in-house to measure the first-ever, time-resolved 
wavefront dynamics for laser propagation through the Mach 0.8 compressible shear layer at 
the Arnold Engineering Development Center (AEDC). [11,12]   Figure 1 shows two 
example time series of measured one-dimensional wavefronts from those tests (5 cm 
aperture); these data were taken at two stations, Station 1, right at the splitter plate, and 
Station 2, half a meter downstream from the splitter plate. What is most noteworthy in the 
data shown in Fig. 1 is the difference in aberration extent between the Station 1 and Station 
2 data. The Station 1 data is due to the turbulent boundary layer feeding the shear layer 
and/or over the extraction window. Even without boundary layer treatment to remove 
these aberrations, the level of aberration is quite low. For a one-micron-wavelength beam 
the Strehl ratio can be estimated to be ~ 0.91 using the large-aperture approximation. It 
might be noted that the Station 2 data contains cyclic tilt, but even when this is removed, 
computed far-field patterns yielded a time-averaged Strehl ratio of < 0.1. [ 12]   Realistic 
beam diameters for a HEL system will not be smaller than 20 cm, and when the wavefronts 
are extended to apertures, Ap, greater than 20 cm the OPDm,s increases to 0.43 urn, further 
reducing the Strehl ratio. 

Station 

OPD _ 

I 

~ 0.05 um 

Station 

OPD ._. 0.27 \itn       5 cm  A 

0.43 urn     20 cm  A 

Figure 1. Wavefront Measurements Taken for Propagation through the AEDC Compressible Shear 
Layer Facility at a Simulated Flight Mach Number of 0.8 at 13,500 ft |Refs. 11,12). 

Cause of Aero-Optic Aberrations.   Not only were the AEDC data the first of their kind, 
the wavefronts at 0.5 m from the separation point presented a far-larger aberration 
environment than was expected due to the then-believed cause of the aberrations in 
turbulent shear layers. Discovering the cause of the aberrations became the objective of 
our second AFOSR grant and the result of that investigation led to the now universally- 



accepted cause referred to as the Weakly-Compressible Model. [2] The key realization at 
the heart of the Weakly-Compressible Model is the fact that because of the Kelvin 
Helmholtz instability, free shear layers naturally form coherent structures and, in a frame 
convecting with the layer, the flow in the coherent structures has high curvature (see Fig. 
2). [1,2] This curvature has a concomitant pressure gradient that lowers the pressure at the 
center of the structures (by several psi in the case of near-transonic shear layers). The low 
pressure is accompanied by a reduction in the density, which in turn lowers the index of 
refraction. It is this variation in the index of refraction due to the coherent flow structures 
and the accompanying high pressure/density in the braid connecting adjacent structures that 
cause most of the aero-optic aberrations in weakly-compressible shear layers. As discussed 
in Reference 2, all other aberrating influences present in a shear layer, fed by a common 
total temperature, have effects that add up to only a small fraction of this principal cause. 
Although, this cause-and-effect explanation appears to be straightforward, it had long been 
thought (i.e., common knowledge) that static-pressure variations in a free shear layer were 
negligible (the so-called Strong Reynolds Analogy); the Weakly-Compressible Model 
argues exactly the opposite. 

Figure 2. Coherent structure at an Instant in Time, its Flow field as seen in the Convective Frame and 
its Concomitant Pressure Well as Computed by the Weakly-Compressible Model |Ref. 2|. 

When the model was used to compute the AEDC conditions, it showed excellent 
agreement in the large-scale structures, but did not predict the higher-frequency 
aberrations on the wavefront data. Further analysis convinced us that the higher- 
frequency aberrations were due to the turbulent boundary layer over the extraction 
window of the tunnel. To simulate the addition of the boundary layer aberrations, an 
aberration time series from AEDC Station 1 (as that on the left of Fig. 1, which is due to 
a turbulent boundary layer) was added to the Weakly-Compressible Model predictions. 
The comparisons are shown in Fig. 3, which shows the simulation for the AEDC Station 
2 conditions in the upper left hand, the AEDC Station 2 data in the lower right hand, and 
the result of adding the Station 1 wavefronts (upper right hand) to the simulations, 
resulting in the lower left hand time series. It is clear that the two bottom time series, the 
simulation and the data, compare well. [2] Having the model enabled us to infer that the 
tilt in the Station 2 data was really a ramification of a larger coherent structure convecting 
past the 5 cm aperture used in the AEDC experiments.    Using our model, we were also 
able to show that over the larger aperture the OPDrms increases to -0.43 pm, none of 
which can be removed by tilt corrections. In this case the Strehl ratio dropped to 0.011. 
[13] Finally, with the help of the model, we were able to scale the aberration effects 



measured at the AEDC conditions over the small 5 cm aperture, not only to larger 
apertures, but also to other altitudes and Mach numbers. [14] 

Station 2 Numerical Simulation Station 1 Experimental Data 
HtfwPMFiK   7MHz 

Simulation • Station 1 Experimental Data Station 2 Experimental Data 

Figure 3. Example Time Series of Wavefronts: the Weakly-Compressible-Model-computed 
wavefronts for the AEDC, Station 2 conditions (upper left); compared to the Station 2 experimental 
wavefronts (lower right); when the Station 1 wavefronts (upper right) are added to the computed 
wavefronts, the comparison is even better (lower left) [Ref. 2|. 

Based on the good agreement with the predicted aero-optic characteristics for the 
AEDC shear-layer and the measured wavefronts, it was clear that the most controversial 
assumption within the weakly compressible model was the setting aside of the Strong 
Reynolds Analogy. As such, in the last AFOSR grant a compressible shear layer facility 
was designed and constructed at Notre Dame to reproduce the shear layer at AEDC and 
used to validate the presence of pressure wells within the coherent structures in the shear 
layer. Figure 4 shows a flow visualization and measured pressure well within a coherent 
structure in a shear layer matching the AEDC conditions. Figure 4 may be compared to 
the weakly compressible model predictions in Figure 2. [15] 

As a final comment regarding the aero-optic environment associated with the flow 
around an airborne beam director, it is clear that the most degrading flow environment is 
due to separated flows. Referring to the Station 1 data in Figure 1, a turbulent boundary 
layer does induce aberrations on a laser passing through it; however, these aberrations are 
relatively small compared to that induced by propagation through a free shear layer. 
Although the OPD,• for propagation through a turbulent boundary layer is relatively 
low, it should be kept in mind that from time to time the instantaneous Strehl ratio (Eq. 2- 
1) can drop to near zero. Thus while the average Strehl ratio is high, some applications, 
such as free-space communication, may need to be concerned with turbulent boundary 
layers. 

10 
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Figure 4. Experimental validation of the Weakly Compressible Model [Ref. 15|. 

Flow-Control, Feed-Forward Adaptive-Optic Foundations. Having now a physical 
explanation for the aberrating effects due to propagation through a free shear layer, it is 
possible to contemplate flow control approaches to mitigating its aero-optical effects. In 
fact, several Air Force Programs are presently investigating flow control influences on 
aero-optic environments. Many of these are specifically directed toward attempting to 
suppress the formation of large coherent structures in a shear layer by the introduction of 
smaller-scale disturbances into the shear layer near its separation point. On the other 
hand, Notre Dame has long advocated the use of flow control to regularize the shear layer 
in such a way that its aberrating structures become "regular" and predictable so that feed- 
forward approaches to adaptive-optic corrections become tenable. It is well known that 
free shear layers are receptive to forcing at the separation point; Reference 4 is a review 
article on the topic. Based on the information contained therein, the most efficient 
approach is to force a shear layer is at its most unstable frequency and this is the 
approach taken for the heated jet demonstration reported below. More recent results have 
shown that forcing can stabilize a shear layer over some distance [16] (recall from the 
Introduction that Notre Dame inferred that stabilization meant regularization). In 
addition, the more recent literature describes other characteristics of the forced shear 
layer that can influence the choice of forcing frequency. Figure 5 demonstrates that a 
shear layer can be caused to stay at the same thickness, that is to say, stabilize its 
thickness, and that the choice of forcing frequency controls the location where the shear 
layer's thickness is stabilized; these experiments were performed for relatively high 
Reynolds number shear layers, albeit for low Mach numbers. As shown in Figure 5, the 
lower forcing frequencies cause the shear layer to be controlled to farther-downstream 
distances. This fact will be returned to when discussing our forcing experiments for the 
compressible shear layer. While the literature did not suggest that the shear layer became 
"regularized" in the sense that every structure convecting through this region is identical 
and its passage is periodic, the fact that the coherent structure size is related to the shear 
layer thickness implied to us that regularization was possible. If, indeed, shear layers 
could become regular and if the aberration patterns had a concomitant regularization, 
then making flow control part of the adaptive-optic scheme could allow a feed-forward 
adaptive optic correction that would circumvent the bandwidth limitations imposed by 
the time delays associated with wavefront sensing, conjugate computation and 

11 



application, and any latencies present in the electronics associated with the deformablc 
mirror and its drivers. 

Figure 5. Evidence of the receptivity of a shear layer to forcing by oscillating a trailing edge flap 
| Kef. 16]. 

12 



///. FEED-FORWARD DEMONSTRATION 

The first accomplishment of this grant was to take advantage of a number of major 
accomplishments from the previous grant to demonstrate feed-forward adaptive-optic 
correction of a 19 cm X 10 cm laser beam propagated through a compressible shear layer. 
Previously developed and demonstrated was the use of voice-coil actuators to robustly 
force and regularize a Mach 0.78 high-speed-side shear layer. Although more-thoroughly 
documented in this grant, phase-locked wavefront information, locked to the forcing 
signal, was used to construct mathematical models for the wavefront patterns being 
produced by the regularized shear layer. Conjugate wavefronts were then constructed as 
a function of phase angle and used to determine actuator displacements on Notre Dame's 
deformable mirror. The final feed-forward adaptive-optic correction was performed by 
synchronizing the actuator displacements to the forcing signal, the adjustment of 
amplitude and phase delay being controlled by a man in the loop. 

Shear Layer Forcing. In the last grant a new shear layer facility was designed and 
constructed, as shown in Figure 6. The new design included a new inlet for a wider test 
section and included a downstream throat to choke the flow and prevent pressure 
disturbances from the vacuum pumps from propagating into the test section. [17] 

Turbulent Mixing 
Lay*1 

Sonic. 
Compressor 
Quieting Throat 

High-Spaed Flow 
0.3<M<1.0 

Low-Speed 
Flow 03<M< 2 

Figure 6. New Compressible Shear Layer Facility [Ref. 21]. 

Two flow-control actuators were shown to be successful; the most robust actuator type 
was found to be voice-coil actuators made from 0.3 W speakers cut so that the diaphragm 
was free to move perpendicular to the flow direction. The amplitude of the motion was 
as high as 1 mm for the lower frequencies (< 500 Hz) rapidly dropping off with 
increasing frequency. Figure 7 shows the actuators mounted in the splitter plate. 

For much of the wavefront capture and correction experiments a 13.3 cm round 
beam was used that was slightly clipped to 11.4 cm by the sides of the test section in the 
cross-stream direction. The captured wavefronts were then extensively analyzed using a 
proper orthogonal decomposition (POD) analysis. It was found that the majority of the 
aberration imposed on the beam by the forced shear layer was contained in the first 2 
POD Eigen modes. These 2 modes consisted essentially of purely two-dimensional, 
streamwise-varying aberrations that were periodic with frequencies at the fundamental 
and first sub-harmonic of the 750 Hz forcing frequency, and could be reproduced to great 
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accuracy with Notre Dame's deformable mirror (DM). Off-line characterization of the 
time-averaged DM waveforms allowed the development of a strategy for feeding the 
waveform forward to the DM to correct the shear-layer abberrated beam. This strategy 
proved successful the first time it was tried. As noted above, most of the work was 
performed using a 13.3 cm beam; however, using 750 Hz forcing the beam captured only 
about half of a wavelength of the aberration such that corrections associated with these 
beams consisted mostly of tilt correction. More ambitious experiments were performed 
using a 19 cm beam, again clipped by the facility to 11 cm in the cross-stream direction. 
Selected frames covering one 750 Hz cycle are shown in Figure 8. 

1/ 
Figure 7. Voice-coil actuators mounted at the edge of the shear-layer splitter plate. 

The frames in Figure 8 show only one half of the two-cycle, sub-harmonic 
repetition of the aberration; the other half of the two-cycle repeat was similar, but 
sufficiently different so that it required a different conjugate waveform on the DM. In 
order to correctly phase-lock the order of the two-cycle repeat of the DM waveforms with 
the shear-layer aberration, a sub-harmonic of 10% amplitude was added to the 750 Hz 
forcing signal. Details of the entire process are contained in the dissertation of Dr. Dan 
Duffin [22] and will be forthcoming in a series of papers. 

Adaptive-Optic Correction.   Once the wavefronts were obtained, conjugates were 
constructed using the phase-lock-averaged temporal coefficients from the first three 
eigenmodes for feeding forward to the DM. Then time (phase-angle) series of actuator 
displacements were constructed for each DM actuator. These displacement phase-angle 
series were then converted to voltage waveforms and loaded into memory in a waveform 
generator for each of the 37 DM actuators. The DM was then run and its conjugate 
waveform measured and compared to the conjugate of the measured wavefronts from the 
regularized shear layer. One example data series from that demonstration is shown in 
Figure 9.   Figure 9 shows a series of OPD,• wavefront error over an entire cycle of 
phase angles with the DM running a range of delays from the forcing-signal trigger. As 
can be seen in the figure, when the mirror is properly phase delayed, the error drops to 
just over 0.1 pm (240°-270°). 
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Figure 8. Series of 12 wavefronts spaced by approximately 1.0 X 10"4 seconds apart for a 19 cm X 11 
cm laser beam propagated through a compressible shear layer (MUpper = 0.78, M|„„er • 0.15) forced by 
voice-coil-actuators at 750 Hz; the beam was propagated normal to the shear layer and centered at 
0.5 m from the splitter plate. 
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Figure 9. Residual Wavefront Error as a function of deformable-mirror phase delay (10 July 2006). 
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The Figure 9 data were based on individual wavefronts taken with a phase-locked 
pulsed laser with a 7 ns pulse length. The Strehl ratio was constructed from far-field 
reconstructions for a 1 urn laser and the on-axis intensity after tilt removal was divided 
by the diffraction-limited, on-axis intensity for a 19 cm X 11 cm aperture beam; two 
selected series of twelve far-field patterns over a range of phase angles, one series for the 
uncorrected beam and one series for the corrected beam, are shown in Figures 1 Oa and 
10b, respectively. The residual OPDn^s error in the corrected series was ~ 0.14 urn. 
Close analysis of the wavefronts and boundary-layer measurements showed that out of 
this OPDm,s residual error, approximately 0.07 of it was due to the turbulent boundary 
layer on the high-speed wall of the tunnel at the beam-extraction window. 

Figure 10a. Uncorrected Far-Field Patterns for a X = 1.0 urn laser. 
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Figure 10b. Corrected Far-Field Patterns for a i. = 1.0 um laser. 

It should be noted that the aperture was rectangular with the shorter dimension in the 
cross-stream direction; the result of this aperture is that the diffraction-limited beam 
becomes elongated as shown in Figure 10b. The diffraction-limited pattern would be a 
double sine function elongated in the vertical, cross-stream direction. In Figure 10b, the 
energy is split into a series of elongated spots which is reminiscent of the aberration 
being nearly one-dimensional and a sine wave, like a wavy grating. 

Figure 11 summarizes the results of the 19 cm X 11 cm correction experiments. 
Figure 11 shows the dramatic improvement in the far-field irradiance from a Strehl ratio 
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of ~ 0.14 prior to correction to ~ 0.66 after correction. The final correction to a Strehl 
ratio of 0.66 represents a reduction in OPDrms from ~ 0.23 um to ~ 0.1 urn, a reduction of 
more than 3 dB. When the turbulent boundary-layer contribution is factored in as a root- 
sum-square contribution, the improved OPDrms drops to below 0.1 urn. 

Adaplrve-Optic Correction of Mach 0 8£l. 1 Shear Layer (8" Beam) 

AO Corrected 
Mean Strehl - 0.66 

r   ^ 

• 

Uncorrected 
Mean Strehl*0.14 

-a—<m**X    *v   y 

l"1.0|im 
^"•vJ-               V*" 

135 180        236 
Phase Angle, Degrees 

Figure 11. Strehi Ratio for an 8 inch diameter laser beam projected through a Mach 0.8 separated shear layer 
with and without Notre Dame's Feed-Forward AO approach 
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IV. AUTOMATED FEEDFORWARD CONTROL SYSTEM 

Introduction. The previous section described successful feed-forward experiments that 
made use of a man in the loop. This section describes work performed under this grant 
that culminated in the construction of an automated control system that has been 
demonstrated offline to be able to adjust the amplitude and phase of the DM's conjugate 
correction. Using the DVM/WCM numerical models discussed in the previous section, it 
was found that a regularized shear layer imposes nearly sinusoidal aberrations onto a 
transiting beam with frequencies corresponding to the fundamental and first sub- 
harmonic of the forcing frequency [22,26]. As described in Section III, this kind of 
regularization was confirmed in experiments conducted in the University of Notre 
Dame's compressible shear layer wind tunnel (see Figure 8, for example). In addition to 
the wavefront measurements shown in Figure 8, measurements have also been made on 
small-aperture beams that traversed the flow. These small-aperture beam tests showed 
that, when the shear-layer was unforced, the beam jitter gave an extremely unpredictable 
signal, but gave a near-periodic, sinusoidal jitter signal when the shear-layer was forced 
and regularized. This single, essentially sinusoidal jitter signal from a small-aperture 
beam propagated through the regularized shear layer formed the basis for the AO 
controller developed under this grant. 

Automated AO Controller. The controller design made use of the computational and 
experimental data showing that the wavefront of a beam transiting a regularized shear 
layer is essentially sinusoidal with frequency components at the fundamental and sub- 
harmonic of the forcing frequency [20]. Using this fundamental/sub-harmonic sinusoidal 
estimate for the aberrated wavefront, a traveling conjugate correcting wavefront was 
applied to the deformable mirror while amplitude and phase adjustments were performed 
by the controller. Once the wavefronts become synchronized, the outgoing wavefront 
aberrations are reduced, thereby increasing the beam's on-target intensity in the far field. 

The optical path difference (OPD) associated with the forced shear layer was 
assumed to be of the form, 

OPD<, (/, x) = Asl sin(kslx- (oj + <f>sl), (4-1) 

where Asi, ksi, a>si, and </>xi are the amplitude, wave number, angular frequency, and phase 
of the forced shear layer's resulting optical wavefront. Since the wave number and 
angular frequency of the shear layer OPD are known, the deformable mirror is driven by 
a waveform with corresponding OPD given by 

OPDDKf (/, x) = ADM sm{kslx - coj + jDM), (4-2) 

assuming that the deformable mirror phase sheet can form the desired sinusoidal wave. 
The variables ADM and <f>DM in Eq. (4-2) represent the amplitude and phase of the wave 
traveling across the deformable mirror; these two variables are unknown and optimized 
via the AO controller. The goal was to use estimates of Asi and </>si to determine the 
amplitude, ADM, and phase, </>DM, of the deformable mirror such that the difference 
\OPD„M -OPD,,| becomes minimized. This is accomplished using a feedback control 

system known as a phase-lock-loop (PLL) [23]. The PLL uses an estimate of the phase 
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difference between the incident wavefront and the deformable mirror to synchronize the 
phase of the deformable mirror's wavefront with the phase of the incident aberrated 
wavefront. This approach replaces the need for an array of two-dimensional real-time 
wavefront measurements (which become bandwidth limited in the case of high-speed 
aero-optic disturbances) with a single one-dimensional position-sensing device. 

AO System Setup. The eventual AO system will consist of a deformable mirror, 
two small-aperture position-sensing devices, a feed-forward control circuit and a 
feedback control circuit as shown in Fig. 12. In a future high-speed shear layer 
experiment, a single small aperture laser beam will provide feedback information to the 
AO controller while a large aperture beam propagates through the flow and off the 
deformable mirror applying corrections. 
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Figure 12. Adaptive-Optic controller and high-speed shear layer experimental setup. 

The small aperture laser beam provides a non-intrusive means of gathering feedback 
information for the controller. In the eventual device, a small aperture beam will be 
propagated through the regularized shear layer. For the control experiments presented in 
this report, the jitter signal from this beam was simulated using a function generator. The 
single beam will then be separated into two beams using a beam splitter. The incident 
beam will be directed onto the first position sensing device, measuring the time varying 
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signal due to the aberrating regularized wavefront and appropriately filtered to capture its 
sinusoidal nature. The filtered signal will then be used as an input into the analog feed- 
forward circuit that estimates the amplitude of the aberrated wavefront. This signal will 
also be used in the feedback circuitry to determine the phase difference between 
wavefronts. The portion of the laser beam which passes through the beam splitter will be 
reflected off the deformable mirror and redirected by the beam splitter onto another 
position sensing device and filtered producing a signal equivalent to the shear layer jitter 
minus the deformable mirror jitter (0v/ - dDM). This signal will be subtracted from the 
shear layer jitter signal to recover the jitter associated with the deformable mirror alone. 

Phase-Lock-Loops (PLLs). Phase-lock-loops (PLLs) are one of the most common 
feedback systems designed and built by engineers. They are used in a variety of 
applications such as communication and storage devices, radio and television, etc. A 
PLL adjusts its frequency with the goal of synchronizing itself with a reference source or 
input signal. The typical PLL consists of a phase detector (PD), loop filter (LF), and 
voltage-controlled oscillator (VCO). The PD compares the phase of the reference source 
with the output from the VCO; this may be accomplished using a multiplier (or mixer) 
along with a low pass filter. The reference source is mixed, or multiplied, with the output 
signal producing both a sum and a difference signal. When the frequency becomes 
locked, this results in a harmonic term at twice the input frequency and a D.C. bias term. 
A low pass filter is used to attenuate the double frequency term, yielding a D.C. error 
signal proportional to the phase difference between the reference source and the VCO 
output. The LF filters the error signal and provides a useful design tool for the control 
engineer to create the desired system tracking response. Second and third order closed 
loop transfer functions are commonly designed due to their stability and tracking 
characteristics. Figure 13 shows a block diagram of a typical PLL. The PD is 
represented by the mixing block and low pass filter combination. 
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Figure 13. Block diagram of a typical PLL. 

In order to apply linear control techniques to the PLL a more conceptual model 
must be used. Figure 13a shows the block diagram for the linearized PLL model. 
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Figure 13a. Block diagram of a conceptual PLL model. 
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In Figure 13a. a summation block is used to represent the mixing function of the 
PD. The output signal (phase-locking signal), Y(s), is subtracted from the reference phase 
signal, R(s), generating an error signal, E(s). The error is then scaled by KPD, 
representing the gain magnitude of the phase detector and passed through the low pass 
filter, F(s). The loop function, Lp(s), performs any other necessary filtering action while 
maintaining closed loop system stability. Finally, the VCO acts as an integrator, where 
Kyco represents the sensitivity constant of the device. The closed loop transfer function 
for the system shown in Fig. 13a. is 

T(S)-
Y{S)=    Kpo^KycoF(s)LF{s) 
R(s)    s + KPDKLFKycoF(s)LF(s), 

where F(s) represents the low pass filter and LF(s) the function designed by the engineer 
to meet the desired response characteristics. In order to design a system with zero 
tracking error for both a step input and a ramp input, the closed loop transfer function 
must contain two poles at zero (one of which is typically obtained via the VCO) in 
addition to the low pass filter's left half plane pole. Further analysis reveals that a 
minimum phase zero must also be included to maintain closed loop system stability. 

Analog Control Circuit Components. In the demonstration system, an analog control 
circuit was constructed that consists of a PLL controller, a feed-forward amplitude 
estimator, and a series of phase-lag circuits that produce six additional signals that are 
incrementally phase shifted from the original phase-locked signal. In the demonstration 
controller, these seven signals will be used to control the seven rows of actuators creating 
the desired spatial waveform traveling across the deformable mirror. This will be 
modified to produce a single trigger signal for the waveform generator described in 
Section III; however for the purposes of demonstrating the system the seven signals were 
used to simulate the function generator. Figure 14 shows a picture of the AO controller's 
circuitry. The following section describes the method of selecting the control parameters 
based on certain design criteria. 

Figure 14. Analog PLL controller test circuitry. 
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Phase-Lock-Loop Analysis. A PLL control strategy was designed with the goal of 
synchronizing the deformable mirror's conjugate correction with the regularized 
wavefront emerging from a forced shear layer. The jitter signal from a small-aperture 
beam projected through the flow acts as the PLL's reference source used for phase- 
locking. The response characteristics of the phase-locking process are dependent upon the 
control parameters used in the control system. A set of design criteria was chosen to aid 
in the selection of these parameter values. Phase margin, settling time, and the integral of 
time multiplied by absolute error (ITAE) served as metrics when analyzing the response 
of the PLL controller. 

The two PLL components with design flexibility are the low pass filter and the 
loop filter; the low pass filter is modeled based upon the expected reference frequency 
while the loop filter is designed with specific closed-loop response characteristics in 
mind. In order to achieve an asymptotic response with zero tracking error to both step 
and ramp changes in phase a second order PLL was employed; a double integrator 
enables the circuit to track step and ramp changes in phase while a minimum phase zero 
ensures closed-loop system stability. Therefore, the low pass filter and loop filter 
Laplace transforms are given by, 

F(*) = -^E- (4-4) 
S + (Qp 

and 

LF(s)=K'-{S + C°=K (4-5) 
SCO. 

respectively. The Laplace transform representing the VCO is given by 

y{s) = ^•, (4-6) 
s 

resulting in an open-loop transfer function, 

GH(S) = 
KPDKLFK

>
M

 
+

 
1) (4-7) 

s +[(/„> + !] 

and a closed-loop transfer function, 
KPDKLFKVCo(/a>: + *) 

si +sl + K PDK LFKvco{ya_)s + K PDK LFKyco 

derived from Eqn. (4-3). 
To simplify the analysis, the open-loop system's pole and zero are assumed to be 

above and below the unity gain bandwidth (cou) by a factor of 8, respectively where 

T{s) = —l      „„„/./.„ (4-g) 

S = ^ = ^. (4-9) 
CO.      cou 

Upon substituting Eqn. (4-9) into Eqn. (4-7), the relationship shown in Fig. 15 is 
obtained where the phase margin is a function of 5: PM(8). Phase margin is a metric 
commonly used to quantify system stability; a larger positive value of phase margin is 
most desirable. It is clear from the plot that as 8 increases, the phase margin 
asymptotically approaches 90 degrees; therefore increasing the value of 8 beyond 
approximately fifteen no longer becomes significantly advantageous. 

23 



Figure IS. Phase margin as a function of the pole placement factor above the unity gain bandwidth, 5. 

The second metric used to analyze the PLL controller was settling time (Ts), defined 
as the time required for the system's output to remain within a certain percentage of the 
desired response [24]. Step and ramp response functions were derived from the closed- 
loop transfer function given in Eqn. (4-8). Figure 15a. shows settling times for a step 
response (left) and ramp response (right) versus 5 for a given set of pole placement 
values. 

Figure 15a. Settling time versus 5 (the pole placement factor above the unity gain bandwidth) for 
various pole locations given a step (left) and a ramp (right) phase response. 

Finally, the ITAE performance index was also used as a metric to analyze the control 
system. This criterion provides a useful measure of the performance based on the 
system's error accumulated over time [24]. Figure 16 shows the ITAE performance index 
plotted as a function of 8. 
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Figure 16. ITAE performance criterion plotted versus 5 (the pole placement factor above the unity 
gain bandwidth) given a step and a ramp phase response. 

Recall that the low pass filter design is based upon the expected operating frequency 
(750 Hz for the experiments documented in this report). This filtering condition along 
with the three design metrics shown in Figs. 15, 15a., and 16 were used to determine an 
optimal set of PLL parameters. The controller was designed with a value of 
approximately 2.35 for the factor 5 and 200 for the pole placement, cop, corresponding to 
a low pass filter cutoff frequency of approximately 80 Hz. 

The finalized PLL design was then modeled in Matlab and used to simulate the 
control system response. The DVMAVCM simulation [24] was used to simulate a forced 
shear layer and its emerging optical wavefront. Figure 16a. shows the phase response 
along with the calculated Strehl ratio as a function of time for the numerically simulated 
AO PLL correction. 
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Figure 16a. Phase-locking response of the simulated PLL controller and the corresponding 
calculated Strehl ratio for a AO correction given a step change in phase (left) and a ramp change in 

phase (right) between the correcting wavefront and the shear layer's aberrating wavefront. 
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Finally, the analog PLL controller was constructed by selecting resistor and capacitor 
values based upon this design analysis. The following section presents experimental 
results for this alternative AO controller. 

Experimental Results. The PLL AO controller described above was tested 
experimentally using a function generator as a reference source. The controller was 
designed to operate optimally given a 750 Hz shear layer jitter signal, corresponding to 
the man-in-the-loop experiment. Therefore, a 750 Hz function generator signal was input 
into the controller, simulating the jitter signal that will be measured via a small aperture 
position sensing device in the final alternative AO control experiment. Upon powering 
the PLL controller, a sinusoidal signal was generated phase-locking to the reference 
source within seconds. The amplitude of the phase-locked signal also adjusted to match 
the reference. 

Several different experiments were conducted to test the PLL's response 
characteristics including its amplitude and phase response. Figure 17 shows amplitude 
error as a function of the time from when the controller was first turned on. It is clear 
from Fig. 17 that the amplitude of the phase-locking signal asymptotically approaches the 
reference amplitude, maintaining less than approximately 1 % error within 0.25 seconds. 
Several more experiments were run in which similar results were obtained. The 
amplitude of the reference signal was also varied during several tests to ensure the 
controllers ability to track amplitude variations. 

0.2 0.3 0.4 0.5 0.6 
time (seconds) 

Figure 17. Experimental amplitude error versus time elapsed once PLL controller is turned on given 
a 750 Hz reference signal with amplitude of 8 Volts. 

Additionally, the phase response of the PLL controller was studied. Figure 18 
shows the phase error as a function of time for a given test. The controller was able to 
phase-lock with the reference signal within approximately 1.5 seconds. Several more 
tests were run demonstrating similar results. The ability of the controller to track step and 
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ramp changes in phase was studied by varying the phase of the reference signal 
accordingly during the test. The PLL was able to readjust its frequency and regain phase- 
locking with the reference source in each case, providing frequency jumps of 
approximately 10 Hz and less. Further refinement to the PLL circuit will be conducted 
with the goal of reducing the oscillatory response (increase dampening) and decreasing 
settling time. 
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Figure 18. Experimental phase error versus time elapsed once PLL controller is turned on given a 
750 Hz reference signal with amplitude of 8 Volts. 

The analog controller also contained six phase lag circuits to simulate the function 
generator described in Section III, which apply consecutive phase shifts to the original 
phase-locked signal. The resulting seven signals with equally spaced phase shifts are 
used to construct a two-dimensional traveling waveform. Figure 19 shows three example 
wavefronts generated from these phase-shifted signals. 
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Figure 19. Two-dimensional wavefronts created from the PLLs seven phase-shifted signals (these 
signals will be used to control the deformable mirror used to perform AO corrections). 

A traveling wavefront such as the one depicted above in Fig. 19 (shown in order 
but widely spaced in phase) will be used to apply conjugate corrections to the DM prior 
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to integrating the function generator. In the AO correction, the seven signals will control 
each of the seven rows of actuators used to manipulate the DM as shown in Fig. 20. 

Figure 20. Xinetics DM photograph (left) and 3-D model of mirror and actuators (right). 
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V. GUIDELINES FOR ADAPTIVE-OPTIC CORRECTIONS BASED ON 
APER TURE FIL TRA TION 

This section is the most lengthy of the report; however, it may be that this 
information is not generally known and may be if interest to many adaptive-optic system 
designers. Thus, for completeness, a large amount of background material is included. 

Background Material 

Atmospheric Optical Propagation. In past decades, the study of wavefront error 
induced by transmission through air has focused on the effects of the free atmosphere. In 
these studies, "free atmosphere" is defined by a set of assumed conditions and driving 
mechanisms. These assumptions allow aspects of the flow and its optical effects to be 
characterized with a limited number of parameters. Guidelines and rules of thumb for the 
design of systems for optical correction based on these characteristics and parameters 
have been developed and used extensively. 

Underlying assumptions. The atmosphere is commonly described by the 
Kolmogorov [25] model of turbulence. In this incompressible model, energy is 
transferred from each length scale in the flow to other scales, with a tendency for the 
transfer of energy to flow from larger scales to smaller, with large persistent eddies 
serving as a source of energy for the turbulent flow while viscous effects at the smallest 
scales dissipate this energy. It is also assumed that the flow has reached an equilibrium 
state, such that the distribution of time-averaged or ensemble-averaged properties is 
homogeneous and isotropic within a given layer of the atmosphere. 

Under these equilibrium conditions, it is predicted that over the range of scales 
between that of the large eddies and the viscous dissipation scales, the kinetic energy 
associated with each length scale in the flow will be distributed such that it can be 
described as a function of the wave number (k) to the negative five-thirds power. The 
range of scales that can be characterized in this manner is called the inertial range. In 
discussions and analysis of atmospheric flows and effects, it is common to assume that all 
activity of interest is found in this inertial range, and that the large energy-containing 
scales and small viscous scales can be ignored. 

Obukhov [26] added a description of temperature variations to the Kolmogorov 
model by treating temperature as a passive scalar that would be carried with the flow and 
be subject to diffusion, but would not have any significant effect on the behavior of the 
flow. In so doing, he found that the distribution of such passive scalars could also be 
described by a function of the form k'53. Tatarski [7] described the propagation of waves 
through flows of this nature, assuming that variations in density were the primary source 
of effects on those waves. By the ideal-gas law, variations in density are linked to 
variations in temperature and pressure in the form 

dp = P/(RT)(dP/P-dT/T). (5-1) 
However, it is standard practice to assume that steep pressure gradients (dP) dissipate 

rapidly in such flows, and that temperature effects greatly outweigh the effects of 
pressure (dT IT»dPI P) in the distortion of waves passing through the air. 
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Parameters of characterization. The spectral distribution of the Kolmogorov 
model is linked to the idea of a structure function, defined as the average of the square of 
the difference in some quantity between two points: 

Dx(xux2) = (X(x])-X(x2))
2 . (5-2) 

In the homogeneous and isotropic flow of Kolmogorov turbulence the location and 
relative position of the points x\ and xj ceases to matter, and the structure function (D.\), 
becomes a function of the separation distance (r) between these two points. Over the 
inertial range in which the k~ 3 function serves to describe the spectrum, the structure 
function can be approximated as 

Dx(r) = Cxr2l\ (5-3) 

As noted in the previous section, the effect of such flows on wave propagation is 
assumed to be caused by density variations linked to temperature variations in the flow. 
Obukhov indicated that these temperature variations could be described by a structure 
function of the sort shown in Eqs. (5-2) and (5-3). By the ideal gas law, in this flow 
where pressure is assumed to be effectively constant, density should be proportional to 
temperature. Regarding optical waves, it is changes to the index of refraction (n) that are 
of interest. Over limited ranges of density the change in the index (An) will be 
proportional to the change in density (A/?).[27] Therefore, over the inertial range of 
length scales, the variations in index of refraction encountered by light waves passing 
through the flow can be described by the function 

Dn{r) = cyi\ (5-4) 

The constant of proportionality in this curve fit, C„ , is used widely to characterize the 
strength of "optical turbulence" in a flow. 

Other parameters of characterization tend to be based on C„ • Tatarski [7] found 
that a structure function for variations seen in a wavefront after that wavefront has passed 
through a flow of this sort could also be described by a structure function, in this case of 
the form 

D(r) = 2.9l(2;r//l)V/3 jc2
n(s)ds, (5-5) 

for which s represents the optical path traveled by the wavefront. Using the distribution 
of wavefront variations described by Eq. (5-5), Fried [28] defined a signal to noise ratio 
for signals received through a finite aperture. He found that this ratio improved as the 
aperture was made larger, to gather more of the incoming signal, but he also found that 
the signal to noise ratio tended to level off once the diameter of the aperture reached a 
given size (ro), and that this size corresponded to 

-3/5 

0.423(2;r/ X)V/3 \C2(s)ds (5-6) 

The length scale ro is also known as the coherence length or as the Fried parameter. 
Other commonly encountered definitions of ro indicate that it is the largest size of 
aperture that can be considered diffraction limited and that it is the size of an aperture 
over which the mean phase variance will be about one radian. However, the diffraction- 
limited definition is inherently imprecise, while the phase-variance definition is an 
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accidental side effect related to a property of apertures that will be addressed in the next 
section. 

Atmospheric optical distortions are not static. They change as the air and 
variations in the air causing these distortions move through the optical path in question 
with some velocity (V) perpendicular to that path. The "twinkle" of stars in the sky may 
be the most commonly encountered example of this. Greenwood [30] found the power 
spectral density of changing phase variations seen at a single point caused by 
Kolmogorov turbulence to be 

PSDp =0.0326(2;r/ A)2 f'*'* ]c2(s)\V(sf/3 ds . (5-7) 

It is a property of such spectra that the mean-squared value of the time-varying 
property can be found by integration of the spectra over all frequencies. Greenwood 
chose to treat an imagined corrective system to deal with these phase variations as a filter 
which would remove or reduce disturbances at some frequencies but have little effect at 
others. The residual phase variance after correction (o>2) would then correspond to an 
integration of the spectrum of Eq. (5-7), after being adjusted by the transfer function of 
this corrective filter. 

oo .S'2 

a2 = Wl-HiffpSD^ =|l-l/(l + i-///c)|
20.0326(2*IXf f^" ]c2(s)\V(s)\5'3 ds.   (5-8) 

0 f, 

The transfer function used by Greenwood and shown in the equation above is the transfer 
function associated with a simple RC filter with a cut-off frequency of/c. From this, for a 
desired level of residual phase variance, one should pick a cut-off frequency of 

-i3/5 

fc 
s2 

5/3 
0.102(2*/Ao-r)

2 \C2{s)\V(s)\     ds (5-9) 

As noted earlier, an average phase variance of about one radian is associated with an 
aperture of size ro, and is seen as an acceptable level of distortion for many applications. 
Therefore, it has become common practice to use a value of ar = 1 in Eq. (5-9) and call 
the associated frequency the Greenwood frequency, (fc) 

Predictions and guidelines for atmospheric optic.  In their joint paper on power 
spectra for corrective systems, Fried and Greenwood [29] found that the mean-squared 
phase variance over an aperture of diameter D with piston correction (or in an application 
where mean piston is irrelevant) would be 

<T
2
=1.075(£>//-0)

5/3
. (5-10) 

This result is expressed in radians, and is the source of the association of ro with a phase 
variance of about one radian. If tip-tilt (T/T) correction of some sort is also applied over 
the aperture, then the residual phase variance over the aperture is 

CT
2=0.141(D//-0)

5/3. (5-11) 

Higher-order corrective systems will generally have multiple points of actuation 
within the overall aperture. A commonly-referenced rule of thumb for designing such 
systems is that a spacing of rs between these points of actuation will leave a residual 
phase error of [ 19] 
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a;{ril)=K(D/r0f\ (5-12) 

The subscript rifit) is used to indicate that this is a fitting error, caused by the inability of 
a system with finite degrees of freedom to perfectly match a distorted wavefront. The 
fitting error constant, K, depends on the type and shape of correction associated with each 
actuator. If the actuators only correct for piston in the associated area, then K = 1.26. For 
a segmented mirror, K =0.28 and for a truly deformable mirror K =0.23. 

A similar rule exists for residual error due to temporal effects and bandwidth 
limitations of a system, in terms of the 3-dB cut-off frequency of that system.[19] 

°V(remp) = (/G I fidB ) (5-13) 

Likewise, if the system has an inherent time delay of At in applying correction, then one 
may expect a residual phase variance of [31 ] 

a;{Al) = 28 A(fG At) 5   3 (5-14) 

Aero-optics 

The parameters presented in Atmospheric Propagation Section have become 
fundamental to discussions of fluid-optic interaction. Likewise, predictions of 
performance and guidelines for design of the sort shown at the end of the section have 
become the standards in crafting systems for correction and compensation. However, 
these parameters and rules arc based upon the assumptions regarding the flow. As is 
usually the case with simplifying assumptions, these assumptions do not apply to all 
cases or conditions. 

Figure 21 shows a sketch of features that might be found in the flow over a 
hemispherical object mounted on a flat surface. This could represent a stationary facility 
in the wind or a turret on a vehicle in motion, up to and including an aircraft in flight. 
One immediately apparent difference between this flow and the atmospheric case is the 
fact that that this flow is not homogenous or isotropic. It has clearly identifiable features 
that are restricted to specific regions of the flow and that have a specific orientation. The 
line of research in this Grant's effort was specifically directed toward the study of shear 
layers, such as the one associated with the separation region behind the hemisphere in 
figure 21. The results presented later have been found to be applicable to a wider range of 
flows and conditions, but a shear layer will be used as an illustrative example in the 
following sections. 

Necklace Vortei Shear Layer Structure* 

rHrvmaat Boundary Layer 

Separation and Reattachment Line Separation Line 

Figure 21. Examples of features in a flow around a hemispherical structure. 

32 



Weakly-compressible flows. Shear layers are formed when two neighboring 
regions in a fluid have mean velocity vectors that are aligned in parallel, but are of 
different magnitudes, or even pointing in opposite directions. Shear layers were once 
thought to be examples of stochastic turbulence, with random variations in velocity 
imposed on top of the mean velocity profile, much like the model for atmospheric 
turbulence. However, it was eventually found that large, coherent structures are in fact 
dominant in a developed shear layer.[33] These structures initially form as growing 
disturbances in the shear layer "roll up" into vortices. The shear layer grows in thickness 
and the associated structures grow in size as fluid from the two flows of differing 
velocities is entrained into the shear layer and neighboring vortices interact and combine 
in a process called pairing.[34] 

It was once common practice to assume that fluctuations in static pressure (P = P 
+ /?') were negligible (p' = 0) within shear layers, even when stream velocities and relative 
differences in velocity were high enough to be considered compressible flows. As 
described in the Introduction to this report, there are sizable pressure wells inside the 
coherent, rolled-up structures of a shear layer and these coupled with the local high- 
pressure saddle points cause concomitant density fluctuations. As discussed in the 
Introduction and through modeling using the Weakly-Compressible model, the effects of 
these structures convecting through the laser beam introduce recognizable undulating 
aberrations on its wavefront. 

Spectral characteristics. Not only do flows of this nature have mechanisms of 
producing distortions not found in the standard atmospheric model (pressure-based as 
well as temperature-based) but they do not have the spectral characteristics predicted by 
the Kolmogorov model. To be more precise, they do not have the same characteristics on 
the relevant length scales that are normally assumed when using the Kolmogorov model. 

In the Kolmogorov model energy is assumed to be added to the flow only at fairly 
large scales. At this scale, one may find organized, persistent structures, representing 
eddies formed by weather systems, plumes from solar heating, or wind passing over 
major features of the landscape. These elements of the flow are generally assumed to be 
on such a large scale as to have little significant effect on the scale of a receiving aperture 
or the width of a transmitted beam, and that only elements of the flow in the previously 
mentioned inertial range are of interest. 

Referring back to figure 21, energy is added to the flow via the interaction 
between the mean flow and the hemisphere used as an example of a system housing. This 
produces a variety of energy-containing eddies. If an aperture for the purpose of receiving 
or transmitting optical signals or energy were to exist in this hemisphere, then it is likely 
that the length scale associated with the flow elements drawn in this figure would be on 
the same order as the optical aperture. 

As previously noted, this line of research began with a study of shear layers. 
Figure 22 shows the power spectrum of the deflection induced upon a narrow beam 
passing through a transonic shear layer, comprised of a Mach 0.88 stream and a Mach 
0.06 stream. The diameter of this beam was approximately 1 mm, and was directed 
through the shear layer at a point 12 cm downstream of the point at which the two flows 
first came into contact. A low-pass filter with a cut-off of 18 kHz was applied in taking 
the measurements to prevent aliasing while a 500 Hz high-pass filter was applied in post- 
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processing to remove vibration noise. This figure shows that there exists a clear peak 
frequency around 2.5 kHz. 

8 10 12 14 16 18 20 
frequency (kHz) 

Figure 22. Shear-layer jitter spectrum at 12 cm. 

Figure 23 shows several such spectra taken at various streamwise locations. In 
this figure, each spectrum has been shifted vertically to reflect the location at which the 
measurement was taken, and all of the spectra have been scaled vertically by the same 
factor to make features of the spectra visible. Of note in this figure is that the peak 
frequency associated with each spectrum shifts to lower frequencies with increasing 
distance downstream. 

10       12       14       16       18       20 
frequency (kHz) 

Figure 23. PSD of beam deflection, shifted by position. 

Shear layers are dominated by relatively large, coherent structures that initially 
form from Kelvin-Helmholtz instabilities and grow linearly as the layer develops and 
moves downstream [33]. The peak frequencies of these spectra correspond to the average 
size (A) of optically-aberrating structures of this nature as they pass the measurement 
location, and are given by the relationship: 

f = MUc. (5-15) 
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The convective velocity (Uc) for the spectra shown in Figures 22 and 23 was about 153 
m/s. From this relationship and the spectrum shown in figure 22, the average spacing of 

the structures passing the measurement point of 12 cm would have been about 6 cm from 
the center of one rolling vortex to the next. Figure 24 shows the structure size estimated 

by this method at multiple points. 
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Figure 24. Characteristic structure size and linear growth. 

Two features of this figure arc of particular importance in comparing this flow to 
the atmospheric model and the guidelines for correction derived from that model. The 
first is that the structure size ranges up to about 16 cm over the 30 cm range of locations 
shown. This indicates that the scale of the shear-layer structures, which contain the 
highest level of energy in the flow and produce the greatest degree of optical aberration, 
are not significantly larger than the likely size of the aperture of an optical system, which 
runs counter to one of the central assumptions for characterizing atmospheric effects. The 
second is that the length scale associated with these structures grows in size as the shear 
layer develops and progresses downstream. This also runs counter to the assumptions of 
Kolmogorov turbulence, in which energy transfer occurs from large scales to smaller. A 
developed shear layer is effectively a two-dimensional flow, and in such flows energy 
tends to transfer from small scales to large.[29] Shear layers do eventually become three- 
dimensional, and thereafter quickly break down in the manner predicted by the 
Kolmogorov model. However, this may not occur until the structures are far downstream 
and out of the optical path. 

Spectral adjustment via flow control As mentioned in a previous Section, the 
main thrust of the Grant was to study the use of flow control to regularize the structures 
causing the aberrations. The structure sizes in figure 24 are estimates of average size, 
based on the peak frequency of the spectra in figure 23, but the peaks found in those 
spectra are rather broad. This indicates that the structures and their associated optical 
aberrations are only quasi-periodic. As detailed in the earlier Section, Oster and 
Wygnanski [36] found that applying forcing, in the form of a moving flap at the initial 
point of a shear layer where the two streams first come into contact, will force a shear 
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layer to grow more quickly than it would without such intentional perturbations. They 
also found that this higher growth rate persists only until it reaches a certain thickness, 
determined by the frequency of the forcing, and that thickness will remain nearly- 
constant for some distance down stream until the flow arrives at the location at which that 
thickness would be reached by the normal, unforced, growth rate. This phenomenon has 
been further explored and expanded upon,[4, 37, 38] indicating that the period of steady 
layer thickness also represents a regularization of the rolling vortices in the shear layer, 
producing a coherent train of structures with greater uniformity in size and spacing. 

Work by others at Notre Dame, discussed earlier in this report, has supported this 
view of shear layer behavior, both computationally^ 18] and experimentally .[17, 21] 
Simulations using the WCM indicate the existence of clear, regular structures and greatly 
regularized optical distortions associated with those structures. Figure 25 below shows 
examples of computational results from this model of an unforced and a forced shear 
layer. Figure 26 shows beam-jitter at a downstream position of 0.415 m in the simulation 
for the unforced and forced cases, indicating a very close match in form between the 
sinusoidal forcing and the narrow beam deflection during forcing. 

Figure 25. WCM realizations of a shear layer without forcing (left) and with forcing (right). 
(Nightingale, 200S).[18] 

Jitter Angto at « -0 415 Jitter An^e at x • 0 41S m 

Figure 26. Normalized beam jitter according to WCM realization of a shear layer without forcing 
(left) and with forcing (right). (Nightingale, 2005).[18] 

Figure 27 shows a reconstructed wavefront from optical experimental data taken 
through a M = 0.78 shear layer being forced at the trailing edge of the splitter plate. 
While the reconstructed OPL from the experiment is not as close to a pure sine wave as 
the simulated beam jitter in figure 26, it does show a fairly steady base frequency. 

36 



4 6 

Time (ms) 

Figure 27. Segment of OPL history for 800 Hz, forced shear layer at x = 570 mm. (Rennic, 2006) |17| 

Additionally, research by others at Notre Dame has lead to the successful use of a 
sinusoidal approximation for real-time optical correction of a forced low-speed heated 
jet. [22] In light of these results, a sinusoidal approximation of wavefronts is certainly 
justifiable for shear layers under forcing. Additionally, with Fourier series and power 
spectra representing optical phenomena as sets of sinusoidal components, there is reason 
to hope that some of the results found by using this approximation may be applicable to 
non-regularized flows as well. 

Spatial filters 

In almost all optical systems the optical information or energy in question is 
received or directed through a finite aperture. Aberrations induced along the optical path 
will manifest in different ways, determined by the relation between the length scale of 
those aberrations, and the size of the aperture. 

The effect of a small aperture to negate some forms of wavefront aberrations 
under the proper circumstances has been known for quite some time. Over 2000 years 
ago, both Greek and Chinese philosophers documented the principle of a pin-hole in 
resolving a projected image. Lord Rayleigh developed formulae for the optimal size of a 
pin-hole to clean up an image for photography.[43] Tyson developed expressions for the 
"gain" of a deformable mirror removing Zernike modes within an aperture. [35] The 
following analysis pursues a similar goal, but in a somewhat different manner and will 
show that this form of analysis can be applied to a wider range of effects and definitions 
of aberration than Zernike polynomials. 

Effects of aperture size on correction. Tip-Tilt (T/T) may be defined as Z-tilt, 
which is a linear fit to the wavefront itself, or as G-tilt, which is an average of the local 
gradient at each point on the wavefront. Correcting for G-tilt is best for putting the 
centroid of the associated far-field pattern on a target point. Correcting for Z-tilt is best 
for minimizing overall actuator stroke if the corrected wavefront is to be passed on to a 
higher-order corrective system. 

In applying T/T correction to a sinusoidal simulation of a wavefront, an 
interesting aspect of such correction becomes apparent. Figure 28 shows an example of 
an aperture in one dimension admitting a sine shaped wavefront. In this instance, the 
length scale of the variations on the wavefront is larger than the aperture. The portion of 
the wavefront over this aperture has relatively little curvature, and performing T/T 
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correction based on Z-tilt leaves a nearly-flat remnant in the aperture, and the resulting 
far field pattern is close to the diffraction-limited ideal. Figure 29 repeats this example 
with sinusoidal wavefront aberrations of a length scale smaller than the aperture. 

£    o 

ro 

-0.5 

Aperture Position Far Field Position 

Figure 28. 171 correction for distortions with a long length scale. 

- Original Wavefront 
Linear Fit 

• Corrected Wavefront 

 Original 
— Corrected 

Diffraction Limited 

Aperture Position Far Field Position 

Figure 29. T/T correction for distortions with a short length scale. 

Both wavefronts have the same magnitude of aberration, and will have the same 
average phase variance (cfy) over time if the source of that aberration is in motion relative 
to the beam. The uncorrected far field in both cases has Strehl ratio [Eq. (2-1)] of about 
0.8. However, effects of T/T correction are quite different for these two cases. In the case 
with the longer length scale for the disturbance, the overall amplitude of the wavefront 
aberrations in the aperture is greatly reduced, as the aberration is manifested largely as 
tilt; as such, the aberration produces in the far field mainly a shifting of the central lobe 
off of the target point, and providing T/T correction brings the point of highest intensity 
back in line with the target point where the center of the diffraction limited pattern would 
be. In the case with a shorter length scale, T/T correction has little effect on the wavefront 
aberrations, and likewise little effect on the far field. 
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Filter functions 

In this study of aperture effects on correction, we took a slightly different 
approach to the spatial filter of an aperture than was followed by Tyson. Much as Tyson 
did, we define a gain function, in terms of a ratio between the average uncorrected 
aberrations, and the average of the aberrations remaining after correction: 

G(StAp) = ycor       ""V   . (5-16) 
(     OPD    ) \ cor ^* *^rms f 

[OPD„J 
However, while Tyson worked primarily in the frequency domain, we find that working 
in the time and space domains lead to equivalent results while making it easier to 
visualize what is going on. The Strouhal number (StAP) is a non-dimensional ratio used to 
characterize some types of oscillating flows, and consists of a characteristic frequency, a 
characteristic length scale, and a characteristic velocity. In this case, the aperture 
diameter is used as the length scale. Using the relationship shown in Eq. (5-15) this can 
also be expressed as a ratio between the aperture and the length scale of the disturbance 

Anf    AnUcl\     An StA  =-£L=-!LJ: = _JL. (5-17) 
Ap     Uc Uc A 

The Uncorrected Aperture. Finding the gain function of Eq. (5-16) first requires 
the average aberrations of the uncorrected case to be known. As addressed above, the 
expected wavefront produced by propagation through a shear layer may be approximated 
with a sine function. As a frequency response is sought for this effect, it makes sense to 
do so again 

OPD(xj) = K sin[2;r(/ • / - xl A)]=K sin[2^(£/c • t - x) I A]. (5-18) 
The experimental studies of shear layers that led to this line of inquiry initially dealt with 
one-dimensional wavefronts, aligned in the direction of the flow. Over such a one- 
dimensional aperture, the OPDrms at any moment is 

f ,   APn ll/2 

OPDms(Ap,t) = \—    J  [OPD(xj)]2dx\     . (5-19) 
I    P-Ap/2 J 

Inserting Eq. (5-18) into Eq. (5-19) the time-varying (OPDrms) is found to be 

[0PDrms(Ap,t)} =7^—^xAp-Acos[A-^(Ap-2Uct)]Sm[\-^(Ar-2Uct)] F \ATCAP) 
r if r (5-20) 

-Acos^T'ffMj, +2£/c/)]sinA~lx(Ap+2Uct)]\ 

A full cycle of the disturbance in Eq. (5-20) occurs over the interval from / = 0 to t = 
A/Uc- Averaging over this period in time will produce the same result that would be 
approached asymptotically by averaging over increasingly longer periods of time: 

[0PDrms(Ap)f =^f-   pPDrms(ApJ)}dt = \K2. (5-21) 

A square or rectangular aperture is virtually identical to a one-dimensional 
aperture, provided the disturbances are aligned along one of the two axes for the aperture. 
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However, the same can not be said for a circular aperture. The edge of a circular aperture 
with a diameter of Ap and centered at (x,y) = (0,0) is defined by 

y = ± Ap1 

(5-21) 

Therefore, integrating over the aperture may be represented by integrating in y to the 
limits of (5-21) and then over the range from -Ap/2 to Ap/2 in x. Using Eq. (5-18) to 
again represent an aberration in the x-direction only, (OPDnmf at any moment in time 
proves to be 

[0PDrms(A„jl2 4K2 \nA 
^sin2 (nU, 

a A: A 
cos 

TlUrt 

APK    •    2 + ——sin 

P 4 — cos 

^cos2 

COS 
( nUct 2nA, 

7cAp - AJ] 

nAp - AJ\ 

(IK A p\ 

{    A    J 

I    A    J. 8 
KA„ - AJ, 

2nA. 

(5-22) 

in which J„ represents an «th-order Bessel function of the first kind. 
As in the one-dimensional case, a full cycle of the disturbance in Eq. (5-22) 

occurs over the interval from / = 0 to t = A/Uc and averaging over this period in time will 
produce the same result that would be approached asymptotically by averaging over 
increasingly longer periods of time. Interestingly, it also leads to the same end result 
found for the one-dimensional case. 

Uc [0PDrms(Ap)f =^f-   pPDnm(Ap<t)}dt. 
2 

(5-23) 

One-dimensional T/T correction. For a one-dimensional wavefront in the form 
of OPD{x,t), observed over an aperture of size Ap, the residual OPDrms over the aperture 
after T/T removal is: 

1 Ap/2 
1/2 

OPDrnn(ApJ) = \—    J   [OPD(x,t)-{A(t) + xB(t))]2dx\ 
{AP-AP/2 

(5-24) 

where A and B arc coefficients defining the tilt and piston being removed. Z-tilt is defined 
as a linear fit to the wavefront and corresponds to values of A and B that minimize Eq. (5- 
24). These values can be found by taking the derivative of Eq. (5-24) with respect to 
these coefficients, which will identify potential minimums at locations where these 
derivatives equal zero. For this purpose, it is sufficient to do this for just the integral 
within Eq. (5-24): 

Ap/2 Ap/2 

—    \  {OPD(x,t)-[A(t) + xB(t)]}2dx=    j -2{OPD(x,t)-[A(t) + xB(t)Ydx = 0,(5-25) 
"A -Ap/2 -Ap/2 
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Ap/2 Ap/2 

dB 
J  {OPD(xj)-[A(t) + xB(t)Ydx=    | -2x{OPD(xj)-[A(t) + xB(t)Ydx = 0.(5-26) 

-/lp/2 -/lp/2 

For a given wavefront, OPD(x,t), this is a set of two equations and two unknowns 
with the solution: 

Ap/2 

\OPD(x,t)dx, (5-27) 
-Ap/2 

1 

12 
Ap/2 

B(t) = —-    \OPD(xj)dx. 
AP    -Ap/2 

(5-28) 

Using the sinusoidal approximation for OPD(x,t) from Equation (5-18), the minimizing 
values for A and B are found to be: 

A(t): 
K\ 

In Ap 

B(t) = 7r-2Ap-i-^K 

si j(Ap -2Uct)  -cos\j-(Ap +2Uct) 
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A 

(5-29) 

.(5-30) 

Inserting these expressions into Eq. (5-24) and averaging over time as was done for the 
uncorrected case in Eq. (5-21) leads to: 

lorOPDrms(Ap)}2 K- 

2**A*p 

x4A4
p-3A* -AV^+3A4cos2 

(rcAp\ 

2AV/l2cos2 

A 
+ 6A TiA   sin 

71A, 

A 
cos 

71 A. 
(5-31) 

Using the definition of gain from (5-16) and the Strouhal number from Eq. (5-17), 

^,c     v   ,    1 + 2cos2M%)    ,^(^tAp)co&(frStAp)      \ - cos2
{TTStAp) 

• Ap f y^^Ap! \nu'Ap 

This gain function is plotted in figure 30, along with markers to show that the 50% (3 
dB) cutoff of this system is found around StAp = 0.85. 

(5-32) 

Figure 30. System gain for T/T correction over a one-dimensional aperture. 

A common practice in dealing with a filter frequency response or other form of 
system transfer function is to plot it in log-log scale or decibels against a logarithmic 
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scale, as had been done for Eq. (5-32) in Figure 31. In this form, it is often easy to see 
how an otherwise complicated function can be approximated by simpler functions of the 
form a(xh) over certain ranges ofx. In Figure 31, it is fairly obvious that for values of StAp 

greater than the cutoff point, G{StAp) approaches a value of one, or 0 dB, as T/T 
correction becomes ineffective in dealing with disturbances of a shorter length scale. In 
this figure it can also be seen that for values of StAp smaller than the cutoff point, the 
function has a logarithmic "slope" of 40 dB per decade, indicating that it can be 
approximated as a function of StAp to the 4th power. 

Figure 31. System gain for T/T correction over a one-dimensional aperture, plotted log-scale. 

More specifically, a Taylor series expansion of Eq. (5-32), or of the trigonometric 
functions within that equation, reveals that 

G(StAD) = —^ = 2.\6St4 

45 Ap- (5-33) 

for small values of StAp. 

Two-dimensional T/T correction. As noted, the initial experiments regarding 
optical distortions caused by shear layers recorded one-dimensional wavefronts aligned 
with the flow. However, the majority of applications requiring T/T correction involve a 
beam or optical viewing path with a two-dimensional cross-section, which is often 
circular. The analysis of the proceeding section for a one-dimensional aperture can be 
repeated for T/T corrections over a two-dimensional circular aperture, replacing Eq. (5- 
24) with 

I T V/2 

.       Ap/2   yj(Ap/2)-x' 

{OPD(x,yJ) ~[A(t) + xB(t) + yC(t)]}2 dydx       .(5-34) OPDrms(Ap,t) = 

As with the one-dimensional aperture, the definition of Z-tilt correction is such 
that the coefficients A, B, and C are set to values that minimize the integral in Eq. (5-34). 
Using the one-dimensional aberrated wavefront of Eq. (5-17) and performing the same 
derivations as were done for the one-dimensional aperture leads to the following two- 
dimensional gain function: 
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0(S*)-'        WJ ^J        j^j-  (5-35) 

This two-dimensional gain is plotted in figure 32 and has a 3-dB cut-off at StAp = 0.93. 

Figure 32. System gain for T/T correction over a two-dimensional aperture. 

Plotting the gain in decibels and a Taylor series expansion indicates that the 
function G = \.52(StAp)

4 serves as an approximation for Eq. (5-35) below the cutoff 
frequency, Figure 33. 
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Figure 33. System gain for T/T correction over a two-dimensional aperture, plotted log-scale. 

Piston correction. Before pressing onward to other forms of correction, it may be 
useful to take a step back, and look at correction for piston alone. In addition to cases of 
active piston correction, there are some applications that are naturally piston-corrected in 
that piston has no effect on the aspects of interest. This is notably true when resolution or 
intensity in the far-field is the goal. The far-field intensity pattern produced by a near- 
field wavefront is unaffected by the average phase or OPD of that wavefront. A 
wavefront of constant phase across an aperture will produce a diffraction-limited pattern 
in the far field. It does not matter what that phase is, provided it is the same value at all 
points in the aperture. Only variations in phase and deviations from this mean value have 
any effect on the far-field pattern. This is one reason why the common approximation for 
the Strehl ratio, 
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SR = e\p[- a\)= exp 
2£ 

0/>D„ (5-36) 

is known as the large aperture approximation; it assumes that the aperture is larger than 
the length-scale of the optical distortions. If the length-scale of the distortions is larger 
than the aperture, then those distortions may manifest partly or even primarily as piston 
across the aperture. 

Therefore, if Strehl ratio or other aspects of the far field intensity pattern are of 
primary concern, then a wavefront passing through a finite aperture may already be 
considered piston-corrected, and is subject to the same sort of filtration effect as was seen 
for T/T correction. The derivation to find the effective gain for piston correction is the 
same as that for T/T correction, but with the coefficients B and C set to zero. The end 
results of these derivations are gain functions of 

i2(xStAo)- 
G{StAp)~ 1 + 

for a one-dimensional aperture and 

G(StAp) = l- 

(tStAp} 

4Jt(*StAp) 

(5-37) 

(5-38) 

for a circular aperture. 
Both these gain functions are plotted in figure 34. The one-dimensional case has a 

50% cutoff of StAp = 0.45 and the gain for a circular aperture has its cutoff at StAp = 0.52. 
Also of potential interest are the points at which the functions reach 90%, which are 
StAp = 0.74 for the one-dimensional aperture and StAp = 0.87 for the circular. These may be 
used as an indicator of the beginning of the range for which the large-aperture 
approximation of (5-36) applies. For that matter, whenever integrating a power spectrum 
to find the phase variance, as in Equation (5-8), for the purpose of using the phase 
variance in the large aperture approximation, the spectrum should be filtered with the 
appropriate piston-correction gain function. The piston-component of wavefront 
variations has no effect on the far-field pattern or Strehl ratio. 

0 0 5 1 1.6 2 2.6 3 0 0.5 1 1.5 2 2.5 3 

Ap Ap 

Figure 34. System gain for piston correction over one-dimensional (left) and circular (right) 
apertures. 

The piston-correction gain functions are plotted again in figure 35 in decibel vs. 
log-scale form, with curves of G = 3.29(StAp) and G = 2Al(StAp) serving as adequate 
approximations for these functions below their cutoff values of StAp. 
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Figure 35. System gain for piston correction over one-dimensional (left) and circular (right) 
apertures. 

G-tilt correction. The analysis in the previous sections parallels that of Tyson and 
others in describing correction for Zernike polynomials. Piston correction corresponds to 
the Zo polynomial, while T/T correction as defined previous sections corrects both the Zo 
and Z| polynomials simultaneously. As noted, Z-tilt is not the only definition of tilt. G-tilt 
is defined as the average of the local gradients at each point of the wavefront over the 
aperture, so that 

I-' Apll 

I G-tilt(t) = 
2 

Ap 

2 dx 
-OPD(xJ)dx opcUf,t -^-J (5-39) J_ 

-Ap/2    ~ AP 

The negative sign inside of the integral in Eq. (5-39) reflects the fact that OPD is the 
conjugate of the wavefront, having equal magnitude (for a medium in which n = 1) but 
opposite sign. Correcting G-tilt may make use of Eq. (5-24), as was done for Z-tilt, but 
for the definition of tilt provided in Eq. (5-39), the coefficient B(t) is selected so that 

0.    (5-40) corrected G~tilt(t) = 
1 

~Ap 
OPD\- 

2     )     2 
- OPD 

'    Ap    \ 
-—-,t 

K     2     ) 
+ f*(0 

tiich leads to 

B( >-i OPDifj -C m i-i J 
(5-41) 

The coefficient A(t) corresponds to piston and has no effect on G-tilt. G-tilt correction is 
primarily intended to shift the centroid of a far-field pattern to a target point. As noted, 
average piston has no effect on the far-field pattern. For the sake of comparison with T/T 
correction in the previous section, A(t) is defined so as to remove the mean piston from 
the corrected wavefront. The end result of this derivation is a gain function of 

G(StAp) cos \xStAp) + 6- 
sin yrStA )cos(xSt 

fctAp) 

ip )      (l-cos2(,rS<j)' 

(*StAp) 
(5-42) 

This gain function is plotted in Figure 36 in both linear and log-decibel scales, and has a 
50% cutoff of StAP = 0.11. Of particular note is that for StAp > 1, the gain becomes larger 
than one. This means that when dealing with distortions in the wavefront with a length 
scale smaller than the aperture, not only is G-tilt correction not effective in lowering the 
average OPDrms within the aperture, but it may actually increase it, which is likely to 
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produce a reduction in Strehl ratio according to the large-aperture approximation of Eq. 
(5-36). 

Figure 36. System gain for G-tilt correction over a one-dimensional aperture. 

Figure 37 shows an illustration of why this is so. By definition, Z-tilt minimizes 
OPDrms. Therefore, gain functions based on OPDrms will always be less than or equal to 
one for Z-tilt correction. However, this is not the definition of G-tilt. Correcting G-tilt for 
a sinusoidal waveform with a period shorter than the aperture over which the correction is 
to take place, as shown in Figure 37, may actually induce a significant degree of Z-tilt 
that was not present and so increase the overall OPD. Note that the gain in Figure 36 goes 
to unity for integer values of StAp and tends to be greater than one for other values where 
the disturbance length scale does not divide evenly into the aperture length. 
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Figure 37. G-tilt correction for Ap > A. 

As G-tilt correction moves the centroid of the far-field pattern to a fixed spot, a view of 
the effects in the far field may also aid in understanding this phenomenon. Figure 38 
shows the far-field intensity patterns for the corrected and uncorrected wavefronts of 

Figure 37. The Fourier-transform-like aspects of far-field propagation cause energy to be 
transferred from the central lobe to side lobes in this pattern. Shorter length scales of 

wavefront distortions are associated with side lobes further from the main lobe or 
intended target point. The way in which the aperture in Figure 37 contains a non-integer 

number of cycles of the disturbance causes more energy to be transferred to one side than 
the other. Under such circumstances, the centroid of the pattern is located partway 
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between the peak of the center lobe and the peak of the large side lobe. Shifting the 
pattern to put the centroid on the target point actually shifts the main energy-containing 

lobe of the pattern off of the target point, reducing the intensity at that point. 
1r -Original 

-Corrected 
Diffraction Limited 

-0.5 0 0.5 
Far Field Position 

Figure 38. Far-field effects of G-tilt correction for short length scales. 

As with Z-tilt, G-tilt correction can also be applied over a circular aperture, with 
the end result of 

G(^)=1+;iK,+—ps^) fs^p (5-43) 

This gain function is plotted in Figure 39 in both linear and log-decibel scales. It shows 
the same sort of behavior with higher values of StAp as was seen for the one-dimensional 
case, in that it reaches values greater than one. On the other hand, the amplitude of the 
initial overshoot past G{StAp) = 1 is not as large and the function seems to approach a 
steady value of G(StAp) = 1 more quickly than the one-dimensional case. The 50% cutoff 
for this function is found at StAp = 0.SS. 

Figure 39. System gain for G-tilt correction over a circular aperture. 

Interestingly, the same functions found as Taylor-series approximations for Z-tilt 
correction across one-dimensional and circular apertures serve as an adequate 
approximation for G-tilt over roughly the same range. So it would seem that the 
tendency to equate G-tilt and Z-tilt in many works and applications is not unreasonable, 
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but only over a range of values in StAP that corresponds to disturbances that are primarily 
T/T in nature. 

Periodic correction. Another type of limitation is that of temporal effects, often 
caused by a physical system having limitations in how quickly it can respond to changes 
in conditions. This often manifests as the system having some upper bandwidth, being 
unable to cope with conditions and inputs of a frequency beyond that. In expressing the 
corrective system gains developed in the preceding sections in terms of Strouhal 
numbers, it would seem that these results include temporal effects, as a Strouhal number 
contains a frequency along with a velocity and length scale. However, this is merely an 
artifact of the relationship between the length scales in the flow and the velocity with 
which they pass through the optical aperture. The analytical and numerical approaches 
used in arriving at these system gains assumed that the corrective system was able to 
instantly react to any changes in the wavefront and achieve the best possible correction it 
could provide for the system without delay. The effective gain so derived reflects the 
degree to which a system with finite degrees of freedom can match the form of the 
wavefront to be corrected. 

Periodic correction is common in discrete-time systems, in which the correction to 
be applied is updated at intervals. To explore this aspect of corrective systems, the 
assumption of a sinusoidal wavefront will again be used in the form of 

OPD(x) = Ksmi — x + <p), (5-44) 

The time-varying aspects of Eq. (5-17) have been combined into the single term tp. If the 
correction were applied at the point in time corresponding to <p0, in the form of a perfect 
fit to the wavefront at that moment, then the corrected wavefront will have the form 

IK 
x + 0 - K sin 

I A 
In periodic correction there will be some time period, (A(p) such that when 

w- (po+ A(p, the correction will update to match the wavefront at that point. Averaging 
over the aperture, the period of correction, and all possible starting-points for that 
correction period leads to: 

(pQ+A<p    |     Ap 12 

.OPD(x) = Ksm\—x + g> -x + tPo A 
(5-45) 

(     OPD     )2=— [—     f   —    f 
2*i*<P   1   Ap 

= K 

-x     •     <p0        ^  -Apll 

2 A<p - sin(A^) 

, 2/r ^ [lit 
K sin —x + <p  - K sin —x + <p0 dxd(pd(pQ 

(5-46) 

A<p 

The average value of uncorrected OPDrms remains the same as was found earlier, and the 
effective gain of a corrective system of this nature would then be 

G(A<p) = 2A<p-Sm{A(p\ (5-47) 
A& 

While this derivation was performed for a one-dimensional aperture Eq. (5-47) also 
represents the result arrived at for a two-dimensional circular aperture. 

In actually implementing this system, it may be more understandable to express 
things in terms of the number of corrections per cycle of the disturbances in the 
wavefront (Nc) or the ratio of the frequency of corrections (fc) to the frequency 
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associated with the wavefront distortions (Jo). Then again, one may begin with only the 
length of the correction period (ri). The relationships between these terms and the 
characteristics of the flow (Uc and A) are 

2^r     „    fn 
N, fc 

= 2TT- 
/CA 

= 2/r- 
l/cr, 

(5-48) 

Figure 40 plots Eq. (5-47) in terms of the number of corrections per cycle. From this 
figure, it seems that performing only one or two corrections per cycle does not reduce the 
averaged OPDrms because performing a perfect correction may reduce the OPD to zero at 
some points in time, but doing so with a frequency this low also allows the distortions in 
the wavefront to reach a point at which the correction and the distortion are 180° out of 
phase with each other, doubling the distortion at those times. As the gain functions are 
expressed in terms of the square of OPDrms to better relate to power spectra, this doubling 
becomes a quadrupling of the effect, and more than counterbalances the perfect 
correction performed at the beginning of the cycle. 

2.5 r 

4 6 8 10 
Nc 

Figure 40. Reduction in wavefront distortions for different frequencies of periodic correction. 

From Eq. (5-47) and figure 40 a minimum of 3.3 corrections per cycle is 
necessary simply to avoid making the average distortion worse, and the 3-dB (50%) point 
is found at 4.9 corrections per cycle. For small values of Acp and corresponding large 
values of NC, it may be more convenient to use the approximation sin(x) = x - x3/6 to 
arrive at the following expression 

G(A^2^ 
A<p + (&<pY / 6 _ (ApY 

Aq> 
= — K 

N 
(5-49) 

Latency. Latency refers to a delay in applying the correction. This may be caused 
by the time needed to calculate the appropriate conjugate of the wavefront to be 
corrected, the time required for actuators to traverse to the required position, or transient 
effects and delays in control signals reaching the required points and values. Again 
making use of the sinusoidal wavefront approximation, if the wavefront is of the form Eq. 
(5-44) and a correction that was a perfect fit but delayed by some time (A0) were applied, 
the corrected wavefront would be of the form 
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.OPD(x) = K sin 
In 
— X + (P 
A 

A'sin 
In 
— x + <p 
A 

A0 (5-50) 

Averaging over the aperture and all moments in time during a cycle of the disturbance 
leads to: 

G(A0) = A-L jJ 
K2 2n {A 

Ap/2 

I 
P -Ap/2 

A. sin —x + (p 
I A 

A" sin —x + cp-AO 
I A 

dxdip = 2(1 -cos(A(9). (5-51) 

As with periodic correction, the results for a circular aperture are the same as for the one- 
dimensional aperture. 

As with periodic correction in the previous section, it is more common to begin 
with knowledge of the flow and some fixed time delay (ji) associated with the system 
than to know the relative phase. In terms of these factors, 

Ucr2 Ad = 2nfDr2 = 2n- (5-52) 

Equation (5-51), plotted in Figure 41, is periodic, as it is based on an assumption of a 
periodic disturbance. In the case of a periodic or even quasi-periodic disturbance, if a 
delayed correction is delayed by enough, then it may regain some of its effectiveness by 
matching and correcting the following cycle of the disturbance. From Eq. (5-51) and 
figure 41, it seems that performing corrections with a latency phase lag of more than 1.05 
radians will add to the OPDrms observed, rather than decrease it. This corresponds to a 
time lag of about 17% of the time associated with one cycle of the disturbance. However, 
if the disturbances are truly periodic, then a phase delay of more than 5.23 radians may 
do some good by catching the next cycle as it comes around. 

Figure 41. Reduction in wavefront distortions for different degrees of latency in the correction. 

If one does not wish to rely on the periodicity of the disturbances, then a phase 
delay of no more than 0.73 radians is recommended, as this represents a 3-dB cutoff for 
the system. For latency delays that are relatively small compared to the time scales 
associated with the wavefront disturbances, it may be more convenient to use the 
approximation cos(x)= 1 - JC 12 to arrive at the following expression: 

G(A0) = 2(1-1 + y2(AO)2) = (A0)2. (5-53) 
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Periodic correction with latency. Virtually any physical system is going to have 
some latency. Therefore, most systems applying periodic correction will also have 
latency. Again assuming a sinusoidal wavefront, the corrected wavefront would be of the 
form 

OPD(jc) = A:sin 
(in 
 x + m 
A 

Ksin 
(2* 

A 
x + <pQ - A8 (5-54) 

Averaging over the aperture, the period of correction, and all possible starting-points for 
that correction in the manner of Eq. (5-46) leads to: 

Ap/2 

I 
2      i     *     i    <Po+&<P 

G(A<p,A0) = ——  f      f   - 
K22x_\[A?    J 

<Pu P -Ap/2 

Ksin 
(in 
 X + (D 
A 

- K sin (
2* — x + <p0 -A9 dxd(pd<pQ (5-55) 

= \A(p + sin(Ad) - sin(A#) cos( A#>) - cos(Ad) sin(A^)] 
A(p 

As a check against the results of previous sections, we find that taking the limit of Eq. (5- 

55) as either A<p or A6go to zero leads to the expressions for corrective gain with latency 
or periodicity alone. A potentially useful approximation for delays and correction periods 
small in comparison to the disturbance cycle is 

v2 G(Ap,A6>) = -(Ap)2 A<pA6 + (A6Y (5-56) 

When actually implementing a system, the data available on the characteristics of the 
disturbances and system are unlikely to be provided in terms of relative phase, as that can 
only be determined by examining the disturbances and system together and in relation to 
each other. In practice, it is more likely that one will be confronted with a disturbance 
that may be characterized by a period of re or frequency offc, such that tc-l/fc- To deal 
with this disturbance, it is then necessary to select or construct a system that will have a 
given update period (t|) or frequency (f\) and latency delay {xi). The terms of relative 
phase in (55) and (56) can then be expressed as 

A<p = 2n—— = 27T fc (5-57) 

and 

Ad = 2n^. (5-58) 

Using these substitutions, Eq. (5-55) may be written as 

r, 

G(r,,r2,rr) 

and Eq.(5-56) as 
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(5-59) 

(5-60) 
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Application and Verification 

The derivations in the previous sections were performed by approximating the 
wavefronts to be corrected as sine waves. This, in turn, was based on the expected form 
of distortions produced by a shear layer. However, this is an extreme simplification of a 
narrow set of flow conditions. Then again, Fourier series, power spectra, and some other 
forms of analysis are based on the idea that any waveform can be expressed as a 
summation of sine functions. 

Tilt correction in a weakly-compressible shear layer. The gain function for one- 
dimensional Z-tilt correction found earlier is intended to be compared to a power spectral 
density. Producing a power spectrum requires a continuous signal or, in the case of 
discreet data points, a continuous sequence. Producing a spectrum with a significant 
degree of frequency resolution requires this to be a relatively long sequence. The manner 
in which wavefronts, as seen through shear layers, were measured in the early stages of 
Notre Dame's studies is described in detail in other papers.[10, 42] Here, it is sufficient to 
say that the deflection of a relatively narrow beam at a measurement point was used as an 
indicator of wavefront slope, much as is done with a Hartman sensor, and then the 
frozen-flow approximation was used to extrapolate wavefront slopes upstream and 
downstream of that point at any given time during the period for which data was 
recorded. A power spectrum for the uncorrected case can be produced by reconstructing a 
long, continuous wavefront, extrapolated upstream and down from the data recorded. 
These long, continuous wavefronts may be thought of as being viewed through an 
infinitely large aperture. 

However, this is not possible for the T/T corrected wavefronts as the correction 
applied will change with each time step, and will change the wavefront accordingly. Thus 
the corrected wavefront within the aperture at each time step must be considered as a 
separate case, and can not be simply joined to the ends of wavefronts from previous or 
following points in time. Because of this, a power spectrum of the corrected wavefront 
would be limited to what could be produced using only the data points within the aperture 
at a given time. 

Averaging several such spectra from different time steps may be useful in some 
cases, and tends to produce smoother spectra, but this does nothing to improve the 
frequency resolution. Achieving higher frequency resolution in such measurements 
packing a greater number of sensors into the area of measurement, having a higher 
sampling rate for those sensors, or some combination of the two, depending on the 
method of wavefront sensing and reconstruction used. However, with any approach the 
cost or effort of achieving the required number of data points within a finite aperture for a 
desired resolution may be prohibitive. This degree of resolution was not available at the 
time of the experiments. 

On the other hand, it is possible to record the tilt removed at each time step, as 
represented by the coefficient B in Eq. (5-24). A power spectrum can then be generated 
from this long continuous sequence of tilts. As the gain, G, in Eq. (5-32) indicates the 
degree of aberration remaining after T/T correction, so the function 1 - G should 
correspond to the power spectrum of the aberrations being removed. Figure 42 shows a 
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power spectrum for beam jitter data taken at a position of 13.4 cm in a shear layer 
comprised of Mach 0.77 and 0.06 flows. Frequencies below 500 Hz have been filtered 
out to remove vibrations in the experimental equipment. It also shows the power 
spectrum for tilt removed in applying T/T correction over an aperture of 5 cm, and the 
function 1 - G scaled in the horizontal axes by the aperture size and the convection 
velocity of 148 m/s to recover frequencies from the Strouhal number defined in Eq. (5- 
17). Vertical scales have been normalized by the peak value of the jitter spectrum. 

 Jitter Spectrum 
T/T Spectrum 
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(b) —T/T Spectrum 
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Figure 42. Comparing power spectra for beam jitter, tilt removed, and predicted filter function. 

For a more direct comparison, figure 42 (b) shows just the tilt removed spectrum 
and 1 - G, with the tilt spectrum scaled by its maximum. The degree to which the 
prediction of 1 - G corresponds with this spectrum can be clearly seen, including the 
small local maximum seen between 5 and 6 kHz. 

Figure 43 (a) shows T/T spectra generated from the same data set used in Figure 
42 for three different sizes of aperture. The smaller apertures have more energy 
associated with them as some elements of the wavefront that could only be corrected with 
higher-order measures for a 20-cm aperture become T/T effects for apertures of 15 or 10 
cm. 

1 

08 

06 

04 

02 

0 

 Ap=15 cm 

— Ap=10 cm 

Ap=5cm 

-Ap=15 cm 
- Ap=10 cm 

Ap=5 cm 
— 1-G(StAp) 

4 
kHz 

Figure 43. (a) Tilt spectra for different aperture sizes, (b) Scaling tilt spectra by Strouhal number. 

Figure 43 (b) shows the same spectra as 43 (a), but plotted against Strouhal 
number based on the aperture size {StAp = Ap-fl Uc) rather than raw frequency. Also 
plotted on this figure is the 1 - G function for a one-dimensional aperture. One way to 
interpret this figure is that as Ap decreases, the spectrum being filtered slides to the left 
and more of the spectrum enters the region for which T/T correction is effective. As with 

53 



Figure 42 (b), the way in which the shape of the filter spectrum predicting which 
frequencies will be removed matches the spectrum for T/T being removed is quite clear. 

Periodic correction of a heated jet In 1996 Cicchiello [39] performed a study of 
the effects of latency and periodic correction in one-dimensional optical distortions 
produced by a heated jet. This flow has tendencies towards periodic disturbances and 
dominating structure sizes similar to those seen in a shear layer, although the mechanism 
behind the optical distortions produced is the temperature difference between the heated 
air of the jet and the cooler surrounding air. His results indicated that not only was the 
Strehl ratio achieved by such correction a function of both the period between corrective 
updates (T\) and the delay in applying the correction (12), but the effects of these factors 
appeared to be decoupled. That is to say, there appears to exist two independent 
functions, h( r) and g( r), such that the Strehl ratio (SR) achieved after correction could be 
described by 

SR(TuT2) = h(T1)g(T2). (5-61) 
This was based on providing post-processed correction to the wavefronts 

reconstructed from these measurements with varying correction periods and latency 
delays, and then constructing the far-field intensity pattern associated with the corrected 
wavefronts. Figure 44 shows curves of Cicchiello's Strehl ratio results associated with 
particular values of ri which have been normalized by their value when r? was equal to 
zero 
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Figure 44. Time-averaged Strehl ratio as a function of time delay between constructing a perfect 
correction and applying it (r2), normalized by the time-averaged Strehl ratio for r2 = 0.0 for three 

values of the period between applying corrections <r,). (Cicchiello, 1997)|39] 

The manner in which the plotted curves of Figure 44 lie close to each other would 
seem to support the idea that Eq. (5-61) is an accurate description of the relationship 
between correction period and latency in determining the Strehl ratio. Particularly 
striking is the way the results for the most frequent correction rate (t\ = 1.0 ms) and the 
least frequent correction rate (ii = 1.4 ms) lie practically on top of each other. 
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The corrective gain functions found previously express the ratio of the corrected 
mean-squared OPD or phase variance to the uncorrected case. Cicchiello's results are in 
terms of Strehl ratio after correction. By the large-aperture approximation Eq. (5-36), 
Strehl ratios can be related to values of OPDrms, and also to phase variance. Given an 
average value of (OPDrms) or rr2 without correction, the value after correction can be 
found by multiplying the uncorrected value by the gain function for that form of 
correction. Therefore, for a disturbance of some period, rc, and of amplitude to produce 
an average uncorrected phase variance of o>o, a plausible prediction for the average 
Strehl ratio after correction would be 

SR(T} ,r2)S exp(-G(r,, r2,rc)cr^0). (5-62) 

According to Cicchiello's assertion that the effects of t\ and xj are decoupled in 
the form of Eq. (5-61), it should be possible to separate Eq. (5-62) into independent 
functions of t\ and xj so that 

SR{xx, r2) = exp(-G, (r,, rc )<x^0 ) exp(-G2 (r2, rc )o^0) • (5-63) 

which implies 
G(r,,r2,rc) = C,(r1,rc) + G2(r2,rc). (5-64) 

However, the gain function for periodic and delayed correction Eq. (5-55) found in a 
previous section does not appear to be separable in this manner. Neither does Eq. (5-56), 
which is an approximation of Eq. (5-55) for small values of t\ and xi. 

Going back to the paper[39] in which Cicchiello's results were presented, the 
uncorrected average Strehl ratio associated with his reconstructed wavefronts was 0.265. 
Using the large-aperture approximation, this indicates an average uncorrected phase 
variance of cfyo = 1 • • 5 radians. From time series representations of reconstructed 
wavefronts associated with this heated jet shown in that paper, a sinusoidal 
approximation does seem to capture the larger disturbances, which have a period of 
tc= 0.005 seconds. Using these values of cr^o and rc  in Eq. (5-56) and Eq. (5-62) over 
the same range of values of ri and xi used by Cicchiello, and normalizing the resulting 
curves in the same manner as was done in Figure 44 produces the set of curves shown in 
Figure 45, which are presented next to Cicchiello's work for comparison. 
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Figure 45. Normalized Strehl ratio predictions (left) compared to experimental results (right). 
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These simulated and approximated results do match Cicchicllo's experimental 
results quite well. The approximation deviates from the experimental results with greater 
latency, tending to over-estimate the drop in Strehl ratio. This may be a result of the 
large-aperture approximation being originally intended for relatively small amplitudes of 
disturbance and becoming less accurate for larger disturbances, [40] having an error of 
10% for Strehl ratios around 0.3. Additionally, while the main structure of the 
disturbances is of a given size and frequency, there are other components of the 
distortions that are of differing sizes, and for which given time periods of T\ and xi will 
correspond to different phase periods of Acp and Ad than for the main distortion 
component. Between these effects and the rough estimates made in producing these 
curves, it is remarkable how well the approximation agrees with the experimental results. 

In light of this, it may be concluded that the gain function for periodic correction 
with latency predicts the effects of such correction with sufficient accuracy that it may 
serve as a guideline in designing or selecting such systems for use in a given application. 

Tracking. The approximation of a wavefront as a sine wave was intended to 
capture the dominant qualities of a shear layer and is not one that could be applied to all 
forms of aberrating flow. However, the filter functions found by this approximation seem 
to work well in describing the effects and effectiveness of T/T correction on experimental 
data from shear layers that display optical activity at multiple length scales and associated 
frequencies. It is worth exploring whether this applies to other forms of optical distortion, 
such as that from atmospheric propagation and Kolmogorov turbulence described earlier. 

As it so happens, this investigation has already been performed, after a fashion, as 
a byproduct of experiments by other researchers. Boeing, SVS performed a series of tests 
at the Advanced Concepts Laboratory (ACL) of MIT/Lincoln Laboratory in Lexington, 
MA, intended to evaluate the effectiveness of various tracking algorithms. [41] This test 
used a set of moving phase screens to simulate optical turbulence. It should be noted that 
these screens were constructed with a distribution of phase distortions over a wide range 
of length scales. As the tracking system was directed at a point source or illuminated 
target model on the far side of the screens, a scoring laser was passed through the screens 
along the same optical path. Performance of the tracking algorithms under consideration 
was evaluated by comparing the output of the tracking control system with the measured 
deflection of the scoring beam. The authors referred to this as the coherence function, 
which was defined as 

,;-,„-,(/) = c
|Cj;^(/)|'  .. (5-65) 

^xx-lrU^xx-scU) 

Where Gx.,r *-.«(/) represents the cross spectral density between the measured scoring 
beam deflection and the tracking control signal in the x direction. G^.,,- and Gxx-x 
represent the autospectral densities of the two outputs. A value of y2 = 1 indicates that the 
tracking signal perfectly follows the disturbances of a given frequency, while lower 
values indicate lesser degrees of effectiveness. 

Figure 46 shows Reference [41] results from two of these tests, performed with 
different relative velocities for the phase screens. They found that these tracking 
algorithms worked for low frequencies, but not for high frequencies, and the point of 
transition between these two frequency ranges was dubbed the "optical frequency." 
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Furthermore, they found that this frequency corresponded roughly to the velocity at 
which the phase screens moved, divided by the diameter of the receiving aperture, 
expressed as v/D in their terminology shown in the figure, or UclAp in the notation used 
elsewhere in this report. 

s 
t 
A e 
U 

Figure 46. Results of Boeing tests at ACL.|41| 

Tracking a target in this manner is effectively tilt correction by another name. 
The coherence function, y2, corresponds to the function 1 - G, with high values indicating 
that the tilt-based distortions or deviations are successfully countered by the system and 
low values indicating that they are not. Figure 47 shows the results from Figure 46, with 
the frequencies scaled by Uc IAp to plot those results in terms of StAp. It also shows the 
function 1 - G for a two-dimensional aperture. 

Figure 47. Scaled Boeing results compared with circular-aperture filter function for Z-tilt correction. 

The 1 - G curve and the scaled experimental results agree fairly well. It should 
be noted that the optical frequency, v/D, defined in Reference [41], is a rough estimate of 
the 50% cut-off for the two-dimensional aperture, defined earlier, was found to be 0.93 of 
this value. 
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Application Atmospheric Propagation. 

In their paper on the spectral requirements of corrective systems,[29] Greenwood 
and Fried also considered the case of correcting piston and T/T over the entire aperture 
before providing localized correction in sub-sections of the aperture. In doing so they 
found that the average residual error, in the form of rms phase variance over the aperture 
after correction, (a^) would be 

<72=1.075(£>/r0)
5/3, (5-66) 

when correcting for piston alone over an aperture of diameter D and would be 

^=0.141(D/r0)
5/3. (5-67) 

after correction of both piston and T/T. These equations are based specifically on the 
optical effects of Kolmogorov turbulence, which can characterized by the Fried 
parameter (r0) described earlier and appearing in the two equations above. 

The spectrum of optical aberrations used by Greenwood[30] in characterizing the 
frequency that came to bear his name is shown in Eq. (5-7). It also is based on a 
parameter (C„2) which is used to characterize Kolmogorov turbulence, as well as the 
convective velocity (V) perpendicular to the optical path. As addressed earlier and used 
by Greenwood, the phase variance after correction should be equal to the product of the 
uncorrected spectrum and the effective filter gain of the correction, integrated over all 
frequencies. 

al=X\G{f)PSD(f)df (5-68) 
o 

It should be noted that the spectrum of Eq. (5-7) is defined in such a way that the 
influence of each negative frequency is combined with its positive counterpart, so that the 
necessary integral runs from zero to infinity rather than from negative infinity to positive 
infinity. 

An effective gain for piston-only correction over a circular aperture was found 
earlier, in the form 

4J?(xStAD) 
G(5^) = 1"     ,     C,        *     ' (5"69) 

The Strouhal number is also a function of frequency and convective velocity, as well as 
the diameter of the aperture. Integrating the product of Eq. (5-69) and Eq. (5-7) over all 
frequencies and assuming Cn2 and convective velocity are constants over the optical path 
of length L indicates that 

'D5nC2
nL 

al = 9.236 
A 

2 

(5-70) 

The Fried parameter is also defined in terms of an integral of C„ over the optical path 
2 Again assuming constant C„ , this would be 

-HT)> 
1L 

2(s)ds 
'       32       ^3/5 

A 
= 0.72939 

*2C2
nL, 

(5-71) 

Based on this, Eq. (5-70) can be written in the form 
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0.553 
/      N5/3 

(5-72) 

This result has the form of the expression produced by Fried and Greenwood, but the 
coefficient of proportionality is quite different than that seen in their result of Eq. (5-10). 

Upon further consideration, the gain functions developed earlier were all based on 
a disturbance in one dimension, wavefronts in the form of a sinusoid in x but with no 
variations iny, reflecting the expected characteristics of aero-optic distortions produced 
by a series of coherent structures in the flow. The analysis by Fried and Greenwood was 
for atmospheric distortions that produced variations in the received wavefront along 
every axis of orientation within the aperture. A first-order approximation of this might be 
to consider a wavefront of two overlapping effects, one in JC and one in y. Again 
considering these distortions as sinusoids or summations of sinusoids, the variations seen 
in each axis would be uncorrelated components of the overall phase variance. The effects 
in x and y would have the same spectral characteristics, but would be "filtered" 
independently and their effect could be combined in the form 

2 2 2 
°V = ax<p + °?<p 0.553 

D 
,5/3 

+ 0.553 
vo ) 

5 3 

1.106 
f    -\5/3 

ro) 
(5-73) 

As a first-order, back-of-the-envelope approach, this approximation fails to fully 
capture the isotropic characteristic of atmospheric distortion. The length scales 
associated with such distortions should be the same in all orientations, whereas the two- 
sinusoid approximation above would have somewhat longer length scales on the 
diagonals than along the x and y vectors. However, the result of this approximation 
shown in Eq. (5-73), is within 3% of Fried and Greenwood's result shown in Eq. (5-10). 

The same principles and approximations can be used with the T/T gain function 
developed earlier to find a prediction of phase variance after this form of correction 

al =0.144 
rD^n 

(5-74) 
V'o / 

which deviates from the results arrived at by Fried and Greenwood by about 2%. 
In a later paper,[31] Fried returned to the subject of optical correction, this time 

focusing on the effect of a time delay in applying the correction. His prediction is shown 
in Eq. (5-14), which is a function of a time delay in the corrective system (At) and the 
Greenwood frequency 

n3/5 

fa 0.102 
In 

jC2„(s)\V(sf3ds (5-75) 

A gain function for latency alone also derived earlier and shown in Eq. (5-51), which can 
be applied to the spectrum of Eq. (5-7) as was done for piston and T/T correction above. 
In this case, it is not necessary to consider and combine effects along two axes as was 
done previously. Temporal effects occur primarily along the vector of the overall 
convective velocity. Performing this calculation and using the definition of the 
Greenwood frequency above predicts a residual phase variance of 

CT2=28.56(/CA0 5/3 (5-76) 

for atmospheric correction with a time delay, which is within 0.5% of Fried's result. 
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